MULTI-OBJECTIVE PLANNING OF CAPACITORS IN DISTRIBUTION NETWORKS WITH CONSIDERATION OF UNCERTAINTIES
سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 677
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CCESI01_341
تاریخ نمایه سازی: 5 بهمن 1395
چکیده مقاله:
This paper suggests a method based on stochastic multi-objective modeling for integration of capacitors in distribution networks. The suggested strategy determines the optimal location and size of capacitors through optimizing four different objective functions simultaneously. The integrity, efficiency and voltage profile of the system will be improved by having proper value of capacitors’ size and location. In this paper, the load and price uncertainties, due to their great effect in planning and operation of power systems, are taken into consideration by suggested methodology which leads to the best solution for the planning problem of networks. The most efficient algorithm known as NSGA II is applied to find non-dominated solutions that allows the DisCo to exercise his/her preferences. In this study, in order to achieve the highest performance of power system, the operational features are considered as hard limit constraints. The proposed method is applied on 33-bus distribution network. The obtained simulation results are presented and discussed to show the effectiveness of the suggested method.
کلیدواژه ها:
Capacitor sitting and sizing ، electric distribution system ، Uncertainty modeling ، Scenario Based-Stochastic Programming ، Multi-Objective ، Genetic Algorithm
نویسندگان
Mohammad Reza Jannati Oskuee
Phd Student, Electrical Engineering Department, Azarbaijan Shahid Madani University, Tabriz, Iran
Karim Roshan Milani
MSc at Electrical Engineering, East Azarbaijan Electric Power Distribution Company, Tabriz, Iran
Sajad Najafi
Associate Professor, Electrical Engineering Department, Azarbaijan Shahid Madani University, Tabriz, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :