Semi-active Control of Structures Using Neuro-Inverse Model of MR Dampers
سال انتشار: 1386
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,720
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
FJCFIS01_127
تاریخ نمایه سازی: 14 خرداد 1387
چکیده مقاله:
A semi-active controller-based neural network for nonlinear benchmark structure equipped with a magnetorheological (MR) damper is presented and evaluated. An inverse neural network model (NIMR) is constructed to replicate the inverse dynamics of the MR damper. Linear quadratic Gaussian (LQG) controller is also designed to produce the optimal control force. The LQG controller and the NIMR models are linked to control the structure. The
effectiveness of the NIMR is illustrated and verified using simulated response of a full-scale, nonlinear, seismically excited, 3-story benchmark building excited by several historical earthquake records. The semi-active system using the NIMR model is compared to the performance of an active and a clipped optimal control (COC) system, which are based on the same nominal controller as is used in the NIMR damper control algorithm. The results demonstrate that by using the NIMR model, the MR damper force can be commanded to follow closely the desirable optimal control force. The results also show that the control system is effective, and achieves better performance than active and COC system.
کلیدواژه ها:
نویسندگان
A Khajekaramodin
Dept. of Civil Eng-Ferdowsi University
H Haji-kazemi
Dept. of Civil Eng-Ferdowsi University
A Rowhanimanesh
Dept. of Electrical Eng - Ferdowsi University
M-R Akbarzadeh
Dept. of Electrical Eng-Ferdowsi University
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :