CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

Autonomous Detection of Heartbeats and Categorizing them by using Support Vector Machines

اعتبار موردنیاز: ۱ | تعداد صفحات: ۵ | تعداد نمایش خلاصه: ۲۵۸ | نظرات: ۰
سال انتشار: ۱۳۹۲
کد COI مقاله: ICBME20_092
زبان مقاله: انگلیسی
فایل PDF حاوی متن کامل این مقاله در حال حاضر در سایت موجود نمی‌باشد.

راهنمای دانلود فایل کامل این مقاله

متن کامل این مقاله منتشر نشده و درپایگاه سیویلیکا موجود نمی باشد.

منبع مقالات سیویلیکا دبیرخانه کنفرانسها است. برخی از دبیرخانه ها اقدام به انتشار اصل مقاله نمی نمایند. به منظور تکمیل بانک مقالات موجود، چکیده این مقالات در سایت درج می شوند ولی به دلیل عدم انتشار اصل مقاله، امکان ارائه آن وجود ندارد.

خرید و دانلود PDF مقاله

اصل مقاله (فول تکست) فوق منتشر نشده و یا در سایت موجود نیست و امکان خرید آن فراهم نمی باشد

مشخصات نویسندگان مقاله Autonomous Detection of Heartbeats and Categorizing them by using Support Vector Machines

  Hassan Yazdanian - Department of Biomedical Engineering University of Isfahan Isfahan, Iran
  Ashkan Nomani - Department of Biomedical Engineering University of Isfahan Isfahan, Iran
  Mohammad Reza Yazdchi - Department of Biomedical Engineering University of Isfahan Isfahan, Iran

چکیده مقاله:

In this paper a new method for categorizing 5 special types of heartbeats has been developed by use of time and apparent properties of the Wavelet Transform of the ECG signal.By using the method in this paper first each heart beat identified autonomously and important points and segments of it,were derived .Then expected features for categorizing the heartbeats are extracted. Finally we categorized the arrhythmias by using the Support Vector Machines. In order to train the SVMand for analyzing its accuracy; arrhythmic signals of MIT-BIH dataset have been used. The results which have been achieved bythis method also contain 96.67 percent of accuracy for categorizing five different heartbeats including Normal (N) LeftBundle Branch Block(LBBB), Right Bundle Branch Block(LBBB), Premature Ventricular Contraction (PVC) and Atrial Premature Contraction (APC).The advantage of using this method compared to the other ones is that we could achieve the expected precision by using less training attributes respect to the other methods

کلیدواژه‌ها:

arrhythmia , categorizing , ECG , segmentation , Support Vector Machine (SVM)

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
http://www.civilica.com/Paper-ICBME20-ICBME20_092.html
کد COI مقاله: ICBME20_092

نحوه استناد به مقاله:

برای بار اول: (Yazdanian, Hassan; Ashkan Nomani & Mohammad Reza Yazdchi, ۱۳۹۲)
برای بار دوم به بعد: (Yazdanian; Nomani & Yazdchi, ۱۳۹۲)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز:
تعداد مقالات: ۱۲۷۲۷
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مدیریت اطلاعات پژوهشی

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

مقالات مرتبط جدید

شبکه تبلیغات علمی کشور

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.