CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

EEG-based Emotion Recognition Using Recurrence Plot Analysis and K Nearest Neighbor Classifier

اعتبار موردنیاز: ۱ | تعداد صفحات: ۶ | تعداد نمایش خلاصه: ۳۱۹ | نظرات: ۰
سال انتشار: ۱۳۹۲
کد COI مقاله: ICBME20_093
زبان مقاله: انگلیسی
فایل PDF حاوی متن کامل این مقاله در حال حاضر در سایت موجود نمی‌باشد.

راهنمای دانلود فایل کامل این مقاله

متن کامل این مقاله منتشر نشده و درپایگاه سیویلیکا موجود نمی باشد.

منبع مقالات سیویلیکا دبیرخانه کنفرانسها است. برخی از دبیرخانه ها اقدام به انتشار اصل مقاله نمی نمایند. به منظور تکمیل بانک مقالات موجود، چکیده این مقالات در سایت درج می شوند ولی به دلیل عدم انتشار اصل مقاله، امکان ارائه آن وجود ندارد.

خرید و دانلود PDF مقاله

اصل مقاله (فول تکست) فوق منتشر نشده و یا در سایت موجود نیست و امکان خرید آن فراهم نمی باشد

مشخصات نویسندگان مقاله EEG-based Emotion Recognition Using Recurrence Plot Analysis and K Nearest Neighbor Classifier

  Fatemeh Bahari - Department of Biomedical Engineering Amirkabir University of Technology Tehran, Iran
  Amin Janghorbani - Department of Biomedical Engineering Amirkabir University of Technology Tehran, Iran

چکیده مقاله:

Electroencephalogram (EEG)-based emotion recognition has been a rapidly growing field. However, accurate and sufficient performance rates are yet to be obtained. This paper presents the classification of EEG correlates on emotion using the relatively new non-linear feature extraction method, namely, Recurrence Plot analysis to extract thirteen non-linear features. This method is compared with feature extraction method based on spectral power analysis. The K nearest neighbor is applied to classify extracted features into the emotional states based on arousal-valence (high/low arousal, valence) plane with the addition of liking axis (positive/negative). Leading to performance rates of 58.05%, 64.56% and 67.42% for 3 classes of valence, arousal and liking; which confirm the advantage of a non-linear feature extraction method over previous frequency based feature extraction techniques

کلیدواژه‌ها:

Emotion Recognition , Chaos , Non-linear Analysis , EEG , Recurrence Plot , K Nearest Neighbor

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
http://www.civilica.com/Paper-ICBME20-ICBME20_093.html
کد COI مقاله: ICBME20_093

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Bahari, Fatemeh & Amin Janghorbani, ۱۳۹۲, EEG-based Emotion Recognition Using Recurrence Plot Analysis and K Nearest Neighbor Classifier, بیستمین کنفرانس مهندسی زیست پزشکی ایران, تهران, دانشگاه تهران, http://www.civilica.com/Paper-ICBME20-ICBME20_093.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Bahari, Fatemeh & Amin Janghorbani, ۱۳۹۲)
برای بار دوم به بعد: (Bahari & Janghorbani, ۱۳۹۲)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز:
تعداد مقالات: ۲۵۰۴۴
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مدیریت اطلاعات پژوهشی

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

مقالات مرتبط جدید

شبکه تبلیغات علمی کشور

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.