The potential of Using Superhydrophobic Airfoils in Laminar Regime: a Numerical Approach

سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 810

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICESCON01_0530

تاریخ نمایه سازی: 25 بهمن 1394

چکیده مقاله:

Fluids at their interface with ordinary solids are motionless. This condition is referred to as no-slip condition. On superhydrophobic surfaces, fluids have slip velocity which is quantified using Navier’s slip length definition. On a superhydrophobic, slip velocity can be as large as %05 of the free-stream’s velocity. We have studied the potential of using superhydrophobic airfoils to improve the performance of airfoils. For that, NACA 1112, 1114, and 1121 were studied numerically. The chord-based Reynolds number was approximately %000. We found that increasing the slip from 0 to %05 results in up to 66% increase in the lift, and 1%5 decrease in the drag force when angle of attack is small (i.e. <%o). For larger angle of attack values (i.e. >%o), using superhydrophobic airfoil is still worthy, but its effectiveness becomes smaller. The less efficacy of superhydrophobic airfoils is explained by the laminar separation bubble phenomenon which can have an adverse effect on lift and drag. For small angle of attack values, by increasing the slip from 0 to %05, the bubble’s length becomes smaller which is favorable and explains the well-behaviour of superhydrophobic airfoils at small angle of attacks. However, for larger angle of attack values, by increasing the slip, bubble’s length grows which results in less efficacy of superhydrophobic airfoils at larger angle of attack values.

نویسندگان

s.f chini

Assistant Professor, Mechanical Engineering Department, University of Tehran, Tehran, Iran.

m mahmoodi

Assistant Professor, Malek Ashtar University of Technology, Aerospace University Complex, Tehran, Iran.

m Nosratollahi

Associate Professor, Malek Ashtar University of Technology, Aerospace University Complex, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • SANDERS, WINKEL, DOWLING, PERLIN, CECCIO, Bubble friction drag reduction in ...
  • Nikitin, Pavel'ev, Turbulent flow in a channel with permeable walls. ...
  • B.J.C. Horsten, A Numerical Study on Laminar and Turbulent Flow ...
  • S. Saravi, K. Cheng, A Review of Drag Reduction by ...
  • R. Garc ia-Mayoral, J. Jimenez, Drag reduction by riblets. Philosophical ...
  • [% D.W. Bechert, M. Bruse, W. Hage, Experiments with three ...
  • Friedmann, Richter, Optimal M icrostructures Drag Reducing Mechanism of Riblets, ...
  • B. Dean, B. Bhushan, Shark-skin surfaces for fluid-drag reduction in ...
  • B.D. Dean, The Effect of Shark Skin Inspired Riblet Geometries ...
  • Y. Peet, P. Sagaut, Y. Charron, Towards Large Eddy Simulations ...
  • F. Kramer, F. Thiele, R. Meyer, Wavy riblets for turbulent ...
  • Usui, Maeguchi, Sano, Drag reduction caused by the injection of ...
  • W.D. McComb, L.H. Rabie, Local drag reduction due to injection ...
  • ELBING, WINKEL, LAY, CECCIO, DOWLING, PERLIN, Bubble -induced skin- friction ...
  • %] Ceccio, Friction Drag Reduction of External Flows with Bubble ...
  • Murai, Frictional drag reduction by bubble injection, Experiments in Fluids. ...
  • A. Biance, C. Clanet, D. Que e Leidenfrost drops, Physics ...
  • B.S. Gottfried, K.J. Bells, T. Leidenfrost, THE LEIDDENFRO ST PH ...
  • Y.S. Song, D. Adler, F. Xu, E. Kayaalp, A. Nureddin, ...
  • R. Truesdell, A. Mammoli, P. Vorobieff, F. van Swol, C. ...
  • R.J. Daniello, N.E. Waterhouse, J.P. Rothstein, Drag reduction in turbulent ...
  • Z. Ming, L. Jian, W. Chunxia, Z. Xiaokang, C. Lan, ...
  • C. Barbier, E. Jenner, B. D'Urso, Large Drag Reduction Over ...
  • %] E. Nun, M. Oles, B. Schleich, Lotus-Effect, _ surfaces, ...
  • Y. Hu, S. Huang, S. Liu, W. Pan, A corro ...
  • V. Hejazi, K. Sobolev, _ Nosonovsky, From sup erhydrophobi city ...
  • M. Susoff, K. Siegmann, C. Pfaffenroth, M. Hirayama, Evaluation of ...
  • B.R. Garc, Dynamics of gas-liquid interfaces in turbulent flows OVer ...
  • B. Wang, J. Wang, Z. Dou, D. Chen, Investigation of ...
  • - Cassie, A B D, S. - Baxter, _ Wettability ...
  • A.B.D. Cassie, Contact angles, Discussions of the Faraday Society. 3 ...
  • %] Yang, Joseph, Virtual Nikuradse, Journal of Turbulence 10 (2002) ...
  • C. Cottin-B izomne, J. Barrat, L. Bocquet, E. Charlaix, Low-friction ...
  • a. Busse, N.D. Sandham, _ McHale, M.I. Newton, Change in ...
  • G. Bolognesi, C. Pirat, Experimental evidence of slippage breakdown for ...
  • R.L. Panton, Incompressible Flow, John Wiley &amp; Sons, Inc., Hoboken, ...
  • a. Busse, N.D. Sandham, G. McHale, M.I. Newton, Change in ...
  • G. Bolognesi, C. Pirat, Experimental evidence of slippage breakdown for ...
  • I. Battiato, Effective medium theory for drag-reducing micro -patterned surfaces ...
  • Ou, Perot, Rothstein, Laminar drag reduction in microchannes using u ...
  • %] B. Bhushan, M. Nosonovsky, The rose petal effect and ...
  • M. Cheng, M. Song, H. Dong, F. Shi, Surface Adhesive ...
  • Daniello, Waterhouse, Rothstein, Drag reduction in turbulent flows Over Sup ...
  • I. Battiato, Effective medium theory for drag-reducing micro -patterned surfaces ...
  • [%0 Shirtcliffe, McHale, Newton, Zhang, Sup erhydrophobic Copper Tubes with ...
  • [%] M. Cheng, M. Song, H. Dong, F. Shi, Surface ...
  • [%2 F.R. Menter, R.B. Langtry, S.R. Likki, Y.B. Suzen, P.G. ...
  • [%3 D.K. Walters, J.H. Leylek, Computational Fluid Dynamics Study of ...
  • [%% M.S. _ U Kaynak, Control of Laminar Separation Bubble ...
  • _ Haggmark, Bakchinov, Alfredsson, Experiments _ a two -dimensional laminar ...
  • نمایش کامل مراجع