Prediction of Ultimate Bearing Capacity of Circularand Square Footings by Neural Network
سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 711
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICICA01_0004
تاریخ نمایه سازی: 27 اسفند 1394
چکیده مقاله:
For ultimate bearing capacity calculation, various Analytical – Experimental methods were proposed by Terzaghi, Mayerhof, Hansen and Vesic and the most comprehensive one in case of no axial load was proposed by Mayerhof. In this article Artificial Neural Network (ANN) is used to predict bearing capacity of circular and square shallow foundations and for this purpose Multi-layer Perceptron (MLP) is utilized. The data usedas the inputs and output of network models were parameters in Mayerhof equation and the bearing capacity calculated from this equation, respectively. Finding the best architecture of model is carried out through making different conditions such as numbers of hidden neurons and activation functions. The result of this work shows high capabilities of this kind of neural network for bearing capacity prediction
کلیدواژه ها:
نویسندگان
M.M Makhmalbaf
MSc. Student of Geotechnical Engineering, Islamic Azad University, Semnan Branch, Iran
M Azimipour
MSc. Student of Water & Wastewater Engineering, Shahid Beheshti University, Iran
M Nikkhah
Assistant Professor, Department of Civil Engineering, Islamic Azad University, Semnan Branch, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :