Comparative study of data fusion algorithms in P300 Based BCI

سال انتشار: 1392
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 915

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ACSIJ-2-4_005

تاریخ نمایه سازی: 24 فروردین 1393

چکیده مقاله:

Brain-Computer interfaces (BCI) research aims at developing systems that help those disabled people communicating through the use of computers and theirbrain waves. The BCI researchers put most of their effort on developing new algorithms to improve the speed and accuracy of the prediction mechanisms in BCIapplications. For that reason, this study is examine the four combination methods that used for aggregate information form several trials. These methods include Summing Scores, Ensemble Average, Bayesian theory and Dempster Shafer. The main purpose of this study is toimprove the speed of prediction mechanism with keep a good classification accuracy. This study was applied on able and disable subjects. Our study result show that the performance of four methods is comparable on able subjects. But the Dempster shafer theory appears best in performance for disabled subjects.

کلیدواژه ها:

P300 ، BCI ، aggregation ، Dempster Shafer ، score ، Bayesian theory and ensemble average

نویسندگان

Mohammed J. Alhaddad

Information Technology Department, King Abdulaziz University Jeddah, ۲۱۵۸۹, P O Box ۸۰۲۰۰, Saudi Arabia

Mahmoud Kamel

Information System Department, King Abdulaziz University Jeddah, ۲۱۵۸۹, P O Box ۸۰۲۰۰, Saudi Arabia

Noura Al-Otaibi

Computer Department, King Abdulaziz University Jeddah, ۲۱۵۸۹, P O Box ۸۰۲۰۰, Saudi Arabia