CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

تخمین عمق آبشستگی موضعی پایه پل بوسیله هوش مصنوعی

اعتبار موردنیاز: ۱ | تعداد صفحات: ۸ | تعداد نمایش خلاصه: ۷۱۸ | نظرات: ۰
سرفصل ارائه مقاله: سازه های هیدرولیکی و دریایی
سال انتشار: ۱۳۹۰
کد COI مقاله: NCCE06_0580
زبان مقاله: فارسی
حجم فایل: ۵۸۸.۹۶ کلیوبایت (فایل این مقاله در ۸ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید. در پایگاه سیویلیکا عموما مقالات زیر ۵ صفحه فولتکست محسوب نمی شوند و برای خرید اینترنتی عرضه نمی شوند.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود PDF مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۸ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳۰,۰۰۰ ریال

آدرس ایمیل خود را در زیر وارد نموده و کلید خرید با پرداخت اینترنتی را بزنید. آدرس ایمیل:

رفتن به مرحله بعد:

در صورت بروز هر گونه مشکل در روند خرید اینترنتی، بخش پشتیبانی کاربران آماده پاسخگویی به مشکلات و سوالات شما می باشد.

مشخصات نویسندگان مقاله تخمین عمق آبشستگی موضعی پایه پل بوسیله هوش مصنوعی

  مجتبی رمضانی مقدم - دانشجوی کارشناسی ارشد سازه های هیدرولیکی دانشگاه شهید باهنر کرمان
  مسعودرضا حسامی کرمانی - استادیار دانشکده عمران دانشگاه شهید باهنر کرمان

چکیده مقاله:

مکانیزم جریان اطراف پایه پل آنقدر پیچیده است که بدست آوردن یک رابطه تجربی کلی که بتواند تخمین درستی از عمق آبشستگی ارائه کند بسیار مشکل میباشد. در این تحقیق با استفاده از قابلیتهای هوش مصنوعی، دو شبکه عصبی مصنوعی پیشخور چند لایهFFBP) و شعاع مبنا 2RBF)سیستم نروفازیANFIS) سیستم برخورد گروهی با داده هاGMDH) و یک شبکه تابع بنیادی شعاعی خودسازمانده فازیFSORBF) مدلهایی برای تخمین عمق آبشستگی موضعی توسعه داده شده است و نتایج آنها با دادههای اندازهگیری شده واقعی، روابط تجربی و با یکدیگر مقایسه شده است. عمق آبشستگی تعادلی به شش پارامتر، میانگین قطرذرات، ضریب دانه بندی، قطر پایه، عمق جریان، سرعت متوسط جریان و سرعت بحرانی جریان وابسته میباشد. مدلهای هوش مصنوعی با دادههای با بعد آموزش بهتری نسب مدلهای بدون بعد داشتهاند و نتایج آنالیز حساسیت نشان میدهد که قطر پایه پل، حساسیت بیشتری در تخمین عمق آبشستگی نسبت به دیگر پارامترها داشته است . براساس نتایج شبکههایANFIS و RBF به ترتیب بهترین نتایج را در مرحله آموزش و ارزیابی داشته و همچنین شبکههای هوش مصنوعی در مقایسه با روابط تجربی دقت بیشتری داشتهاند.

کلیدواژه‌ها:

عمق آبشستگی، پایه پل،هوش مصنوعی، FFBP، RBF، ANFIS، GMDH،FSORBF

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
http://www.civilica.com/Paper-NCCE06-NCCE06_0580.html
کد COI مقاله: NCCE06_0580

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
رمضانی مقدم, مجتبی و مسعودرضا حسامی کرمانی، ۱۳۹۰، تخمین عمق آبشستگی موضعی پایه پل بوسیله هوش مصنوعی، ششمین کنگره ملی مهندسی عمران، سمنان، دانشگاه سمنان، http://www.civilica.com/Paper-NCCE06-NCCE06_0580.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (رمضانی مقدم, مجتبی و مسعودرضا حسامی کرمانی، ۱۳۹۰)
برای بار دوم به بعد: (رمضانی مقدم و حسامی کرمانی، ۱۳۹۰)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز:
تعداد مقالات: ۱۸۷۶۶
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مدیریت اطلاعات پژوهشی

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

مقالات پیشنهادی مرتبط

مقالات مرتبط جدید

شبکه تبلیغات علمی کشور

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.