CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

پیش بینی نرخ نفوذ ماشین حفر تونل؛ مقایسه نتایج روش های رگرسیون خطی چند متغیره و سیستم استنتاج تطبیقی فازی عصبی

اعتبار موردنیاز: ۱ | تعداد صفحات: ۸ | تعداد نمایش خلاصه: ۵۹۳ | نظرات: ۰
سرفصل ارائه مقاله: ژئوتکنیک
سال انتشار: ۱۳۹۰
کد COI مقاله: NCCE06_0980
زبان مقاله: فارسی
حجم فایل: ۲.۰۴ مگابات (فایل این مقاله در ۸ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید. در پایگاه سیویلیکا عموما مقالات زیر ۵ صفحه فولتکست محسوب نمی شوند و برای خرید اینترنتی عرضه نمی شوند.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود PDF مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۸ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳۰,۰۰۰ ریال

آدرس ایمیل خود را در زیر وارد نموده و کلید خرید با پرداخت اینترنتی را بزنید. آدرس ایمیل:

رفتن به مرحله بعد:

در صورت بروز هر گونه مشکل در روند خرید اینترنتی، بخش پشتیبانی کاربران آماده پاسخگویی به مشکلات و سوالات شما می باشد.

مشخصات نویسندگان مقاله پیش بینی نرخ نفوذ ماشین حفر تونل؛ مقایسه نتایج روش های رگرسیون خطی چند متغیره و سیستم استنتاج تطبیقی فازی عصبی

  عبدالرضا یزدانی چمزینی - دانشجوی کارشناسی ارشد مهندسی معدن، دانشگاه تربیت مدرس، تهران
  سیدمحمد هاشمی ریزی - دانشجوی کارشناسی ارشد مهندسی معدن، دانشگاه تربیت مدرس، تهران
محمدحسین بصیری - استادیار و عضو هیئت علمی گروه معدن، دانشگاه تربت مدرس، تهران

چکیده مقاله:

ماشین های حفار تمام مقطع از مهمترین ماشین های حفاری در تونل ها و فضاهای زیرزمینی به شمار میروند. به دلیل قیمت بالای ماشین ارزیابی عملکرد در این روش حفاری از اهمیت ویژه ای برخوردار است. بدین منظور مهمترین شاخص ارزیابی عملکرد ماشین حفر تونل نرخ نفوذ این دستگاه میباشد. روش های متنوعی برای پیش بینی نرخ نفوذ وجود دارد که می توان به سه دسته روش های تحلیلی، آماری و هوش مصنوعی تقسیم بندی نمود. روش های رگرسیون خطی چند متغیره ( از زیر مجموعه های روش آماری) و سیستم استنتاج تطبیقی فازی عصبی (از زیرمجموعه های روش های هوش مصنوعی) دو رویکرد با کارایی بالا در مدل سازی و تشخیص الگو در داده ها می باشند. در این تحقیق با به کار گیری روش رگرسیون خطی و سیستم استنتاج تطبیقی فازی عصبی به پیش بینی نرخ نفوذ ماشین حفر تونل برای تونل انتقال آب کوئینز در نیویورک پرداخته است. نتایج نشان از آن دارد که مدل استخراج شده از متدولوژی سیستم استنتاج تطبیقی فازی عصبی دارای ضریب همبستگی 0/98و روش رگرسیون خطی چند متغیره دارای ضریب همبستگی 0/62 می باشد.

کلیدواژه‌ها:

پیش بینی نرخ نفوذ، ماشین حفر تونل، رگرسیون خطی چند متغیره، سیستم استنتاج تطبیقی فازی عصبی، تونل کوئینز

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
http://www.civilica.com/Paper-NCCE06-NCCE06_0980.html
کد COI مقاله: NCCE06_0980

نحوه استناد به مقاله:

برای بار اول: (یزدانی چمزینی, عبدالرضا؛ سیدمحمد هاشمی ریزی و محمدحسین بصیری، ۱۳۹۰)
برای بار دوم به بعد: (یزدانی چمزینی؛ هاشمی ریزی و بصیری، ۱۳۹۰)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز:
تعداد مقالات: ۲۷۳۲۴
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مدیریت اطلاعات پژوهشی

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

مقالات پیشنهادی مرتبط

مقالات مرتبط جدید

شبکه تبلیغات علمی کشور

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.