Helpful and Efficient Framework for Classification and Analysis of various Fraud Detection Approaches from the perspective of Time and Features

سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 727

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

CEPS04_005

تاریخ نمایه سازی: 11 مرداد 1396

چکیده مقاله:

Fraud detection is one of the ways to cope with damages of fraudulent activities that due to the rapid development of Internet technology and the rapid rise of electronic business have increased. In this paper, first the concept of fraud and fraud detection position will be expressed and then a helpful and efficient framework for classification of various fraud detection approaches will be presented. Investigation of the proposed methods in this field indicates the existence of various approaches in them for fraud detection and perception of existing concepts. Lack of comprehensive and valuable classification in this regard and specified evaluation criteria in them have faced the researchers with a new challenge. Therefore, in this paper, in addition to the explanation and identification of fundamental approaches to detect fraud from the perspective of time and features, appropriate criteria for evaluating these methods were described. Finally, the proposed approaches were evaluated based on the presented criteria. Using the systematic and structured framework proposed in this paper can be beneficial in detecting more accurate fraud detection methods and applying them in a more principled way. Additionally, using the mentioned framework lays the appropriate base for a comparative study of the existing methods in this regard.

نویسندگان

Zahra Karimizandian

Data Mining Lab, Department of Computer Engineering, Alzahra University, Tehran, Iran

Mohammadreza Keyvanpour

Data Mining Lab, Department of Computer Engineering, Alzahra University, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • J.-H. Wang, et al., _ _ T echno logy-based financial ...
  • V. Chandola, et al., "Anomaly detection : A survey, " ...
  • S. Pedneault, Fraud 101: Techniques and Strategies for Un derstanding ...
  • H. Cendrowski, et al., The handbook of fraud deterrence: John ...
  • C. Phua, et al., "A c omprehensive survey of data ...
  • M. Krivko, "A hybrid model for plastic card fraud detection ...
  • P. Richhariya, et al., "A Survey on Financial Fraud Detection ...
  • W.-H. Chang and J.-S. Chang, "A multip le-phased modeling method ...
  • W.-H. Chang and J.-S. Chang, "A novel two-Stage phased modeling ...
  • S. Panigrahi, et al., "Credit card fraud detection: _ fusion ...
  • _ 1]Passmore, D. L. (2011). "Social network analysis: Theory and ...
  • C. C. Aggarwal, An introduction to social network data analytics: ...
  • S. Wasserman, Social network analysis: Methods and applications vol. 8: ...
  • H. Xu, et al., "Real-Time Model Checking for Shill Detection ...
  • W.-H. Chang and J.-S. Chang, "Using clustering techniques to analyze ...
  • S. Sadaoui, et al., "A Real-Time Monitoring Framework for Online ...
  • F. L. Gaol, et al., Recent Trends _ Social and ...
  • S. Jamshidi and M. R. Hashemi, "An efficient data enrichment ...
  • نمایش کامل مراجع