CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

Neural Network Modeling of Axial Flow Compressor Off-design Performance

اعتبار موردنیاز: ۱ | تعداد صفحات: ۱۰ | تعداد نمایش خلاصه: ۲۰۱۵ | نظرات: ۰
سرفصل ارائه مقاله: توربوماشین
سال انتشار: ۱۳۸۵
نوع ارائه: شفاهی
کد COI مقاله: CFD10_045
زبان مقاله: انگلیسی
حجم فایل: ۴۳۴.۵۵ کلیوبایت (فایل این مقاله در ۱۰ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید. در پایگاه سیویلیکا عموما مقالات زیر ۵ صفحه فولتکست محسوب نمی شوند و برای خرید اینترنتی عرضه نمی شوند.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود PDF مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۱۰ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳۰,۰۰۰ ریال

آدرس ایمیل خود را در زیر وارد نموده و کلید خرید با پرداخت اینترنتی را بزنید. آدرس ایمیل:

رفتن به مرحله بعد:

در صورت بروز هر گونه مشکل در روند خرید اینترنتی، بخش پشتیبانی کاربران آماده پاسخگویی به مشکلات و سوالات شما می باشد.

مشخصات نویسندگان مقاله Neural Network Modeling of Axial Flow Compressor Off-design Performance

  Kaveh Ghorbanian - Associate Professor Department of Aerospace Engineering Sharif University of Technology Tehran - IRAN
  Mohammad Gholamrezaei - Graduate Student Department of Aerospace Engineering Sharif University of Technology Tehran - IRAN

چکیده مقاله:

GRNN is employed to reconstruct the compressor performance map. Two different models are adopted to examine the accuracy of the GRNN technique. The results indicate that the GRNN predictions for both models are very sensitive to the width of the probability σ. Further, since the distribution of the training data is multimodal with large variance differences modes, a local optimized value for the probability is suggested providing a more accurate result compared to an overall value for the probability. Furthermore, the sensitivity of the GRNN technique to the number of training data is investigated. The results show that as the number of samples is reduced to about 70% of the available samples, the performance map is predicted with an accuracy of approximately 90%. In general, the results highlight the capability of GRNN in performing design approaches as well as optimization studies of sufficient accuracy with modest amount of data for axial compressors.

کلیدواژه‌ها:

Axial Compressor, General Regression Neural Network, Performance Map

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-CFD10-CFD10_045.html
کد COI مقاله: CFD10_045

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Ghorbanian, Kaveh & Mohammad Gholamrezaei, ۱۳۸۵, Neural Network Modeling of Axial Flow Compressor Off-design Performance, دهمین کنفرانس دینامیک شاره ها, یزد, دانشگاه یزد, دانشکده مهندسی مکانیک, https://www.civilica.com/Paper-CFD10-CFD10_045.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Ghorbanian, Kaveh & Mohammad Gholamrezaei, ۱۳۸۵)
برای بار دوم به بعد: (Ghorbanian & Gholamrezaei, ۱۳۸۵)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :

  • Nelson, S.A., Filipi, Z.S., and Assanis, D.N., ،The Use of ...
  • Moraal, P., and Ko lmanovsky, I., _ ;Turbocharger Modeling for ...
  • Bao, C., Ouyang, M., and Yi, B., :Modeling and optimization ...
  • Wasserman, P. D., Advanced Methods in Neural Computing, Van Nostrand ...
  • Cichocki, A., and Unbehauen, R., Neural Networks for Optimization and ...
  • Parzen, E., ،4On Estimation of a Probability Density Function and ...
  • Cacoullos, T., ،، Estimation of a Multivariable Density, ? Ann. ...
  • Specht, D. F., ،4 A General Regression Neural Network, IEEE ...
  • Oates, G. C., A ero th ermodynamic s of Aircraft ...
  • Oates, G. C., 1988, A ero th ermodynamic s of ...
  • Kurzke, J., and Riegler, C., 44A New Compressor Map Scaling ...
  • علم سنجی و رتبه بندی مقاله

    مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
    نوع مرکز:
    تعداد مقالات: ۱۸۲۵۲
    در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

    مدیریت اطلاعات پژوهشی

    اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    مقالات پیشنهادی مرتبط

    مقالات مرتبط جدید

    شبکه تبلیغات علمی کشور

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.