CIVILICA We Respect the Science
ناشر تخصصی کنفرانسهای ایران
عنوان
مقاله

بهبود آموزش شبکه های عصبی پرسپترون چند لایه با استفاده از الگوریتم رقابت استعماری آشوبی متعامد اصلاح یافته

اعتبار موردنیاز : ۱ | تعداد صفحات: ۱۱ | تعداد نمایش خلاصه: ۶۹۸ | نظرات: ۰
سال انتشار: ۱۳۹۳
کد COI مقاله: COMPUTER01_051
زبان مقاله: فارسی
حجم فایل: ۸۸۱.۳۸ کیلوبایت (فایل این مقاله در ۱۱ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۱۱ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳,۰۰۰ تومان

آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله بهبود آموزش شبکه های عصبی پرسپترون چند لایه با استفاده از الگوریتم رقابت استعماری آشوبی متعامد اصلاح یافته

  مهرداد صادقی حریری - دانشجوی کارشناسی ارشد، موسسه آموزش عالی پیام گلپایگان
  پیمان معلم - دانشیار، گروه مهندسی برق، دانشگاه اصفهان
  سیدمهدی هاشمی - مربی، دانشکده مهندسی برق، موسسه آموزش عالی پیام گلپایگان

چکیده مقاله:

توانایی یادگیری و مدل غیرخطی شبکه های عصبی پرسپترون های چند لایه (MLP)، آنها را در بسیاری از کاربردها، موثر کرده است. MLP را می توان به روش های مختلف آموزش داد که یکی از این روش ها، الگوریتم های مبتنی بر پس انتشار خطا (BP) است. لازم به ذکر است که این روش تعلیم، اشکالاتی از جمله: همگرایی در کمینه های محلی، عدم تضمین رسیدن به پاسخ مطلوب، تعمیم پذیری ناکافی را دارد. برای جبران این مشکلات از روش های کمینه سازی تصادفی مختلفی استفاده می شود. در این مقاله شبکه عصبی MLP برای داده های واقعی یونسفر و سونار با نسخه های مختلف الگوریتم رقابت استعماری آموزش داده شده و به منظور بررسی تعمیم پذیری الگوریتم ها از روش اعتبار سنجی متقابل K-Fold استفاده های مختلف الگوریتم رقابت استعماری آموزش داده شده و به منظور بررسی تعمیم پذیری الگوریتم ها از روش اعتبارسنجی متقابل K-Fold استفاده شده است. در نهایت استفاده از الگوریتم رقابت استعماری آشوبی متعامد (COICA) اصلاح شده، موفق به کاهش خطای طبقه بندی و بهبود همگرایی می شود.

کلیدواژه‌ها:

پرسپترون های چند لایه، طبقه بندی داده، داده های یونوسفر و سونار، الگوریتم رقابت استعماری آشوبی متعامد، اعتبارسنجی متقابل K-Fold

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-COMPUTER01-COMPUTER01_051.html
کد COI مقاله: COMPUTER01_051

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
صادقی حریری, مهرداد؛ پیمان معلم و سیدمهدی هاشمی، ۱۳۹۳، بهبود آموزش شبکه های عصبی پرسپترون چند لایه با استفاده از الگوریتم رقابت استعماری آشوبی متعامد اصلاح یافته، همایش ملی علوم و مهندسی کامپیوتر، مشهد، موسسه آموزش عالی خاوران، https://www.civilica.com/Paper-COMPUTER01-COMPUTER01_051.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (صادقی حریری, مهرداد؛ پیمان معلم و سیدمهدی هاشمی، ۱۳۹۳)
برای بار دوم به بعد: (صادقی حریری؛ معلم و هاشمی، ۱۳۹۳)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :

  • J.X. Xie, C.T. Cheng, K.W. Chau, Y.Z. Pei, " A ...
  • M. Melanie, _ Introduction o Genetic Algorithms, " Massachusett MIT ...
  • Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. Proceedings of IEEE, ...
  • L. A. Ingber, "Simulated annealing: practice versus theory, " J. ...
  • _ Franklin and M. Bergerman, "Cultural Algorithms: Concepts and Experiments, ...
  • M. Dorigo, V. Maniezzo and A. Colorni, "The ant system: ...
  • R. Storn and K. Price, "Differential evolution - a simple ...
  • Immune Systems: Part I _ Basic Theory and Artificialه [۹] ...
  • E. Rashedi, H. Nezamabadli -pour and S. Saryazdi, _ Gravitational ...
  • E. Atashpaz- Gargari and C. Lucas, "Imperialist Competitive Algorithm: An ...
  • Talatahari, S., Azar, F., S heikholeslami, R., et al., 2012. ...
  • Kaveh, A., Talatahari, S., 2010. Optimum design of skeletal structures ...
  • Simon. H, Neural Networks A comprehensive Foundation, second Edition, Prentice ...
  • D.A. Coley, "An introduction to genetic algorithms for scientists and ...
  • Ott E. Chaos in dynamical systems. Cambridge UK: Cambridge University ...
  • Andries P. Engelbrecht, Computational intelligence : an introduction, Second Edition, ...
  • Center for Machine Learning and Intelligent Systems, UC Irvine Machine ...
  • علم سنجی و رتبه بندی مقاله

    مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
    نوع مرکز: موسسه غیرانتفاعی
    تعداد مقالات: ۱۱۷
    در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

    مدیریت اطلاعات پژوهشی

    اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    مقالات پیشنهادی مرتبط

    مقالات مرتبط جدید

    شبکه تبلیغات علمی کشور

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.