Classification of Middle phase of seizure and seizure-free EEG signals using fractional linear Forecasting
محل انتشار: دومین کنفرانس ملی محاسبات نرم
سال انتشار: 1396
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 523
فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CSCG02_099
تاریخ نمایه سازی: 7 اسفند 1396
چکیده مقاله:
In this paper, we show another technique for electroencephalogram (EEG) signal grouping based on fractional-arrange math. The technique, named Fractional Linear Forecasting (FLF), is utilized to display Middle phase of seizure (ictal) without and seizure EEG signals. It is discovered that the displaying blunder vitality is considerably higher for ictal EEG signals contrasted with sans seizure EEG signals. In addition, it is realized that Middle phase of seizure (ictal) EEG signals have higher energy than sans seizure EEGsignals. These two parameters are then given as contributions to prepare a support vector machine (SVM). The prepared SVM is then used to group an arrangement of EEG signals into Middle phase of seizure (ictal) and without seizure classifications. It is discovered that the proposed technique gives an order forecasting of 95.33% when the SVM is prepared with the spiral premise work (RBF) part.
نویسندگان
Mohammad Fiuzy
school of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran.
Seyed kamaleddin Mousavi Mashhadi
school of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran.