CIVILICA We Respect the Science
ناشر تخصصی کنفرانسهای ایران
عنوان
مقاله

داده کاوی

اعتبار موردنیاز : ۱ | تعداد صفحات: ۷ | تعداد نمایش خلاصه: ۳۳۱ | نظرات: ۰
سال انتشار: ۱۳۹۴
کد COI مقاله: CSITM02_086
زبان مقاله: فارسی
حجم فایل: ۵۵۶.۴۸ کیلوبایت (فایل این مقاله در ۷ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۷ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳,۰۰۰ تومان

آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله داده کاوی

  زهرا روزبان - مرکزآموزش علمی کاربردی مخابرات تبریز
  زهرا اسدی - مرکزآموزش علمی کاربردی مخابرات تبریز
  پدرام اقدسی - مرکزآموزش علمی کاربردی مخابرات تبریز

چکیده مقاله:

امروزه با گسترش سیستم های پایگاهی و حجم بالای داده ها ی ذخیره شده در این سیستم ها ، نیاز به ابزاری است تا بتوان داده های ذخیره شده را پردازش کردواطلاعات حاصل از این پردازش را در اختیار کاربران قرار داد . با استفاده از پرسش های ساده درو ابزارهای گوناگون گزارش گیری معمولی ، می توان اطلاعاتی را در اختیار کاربران قرار داد تا بتوانند به نتیجه گیری در مورد داده ها و روابط منطقی میان آنها بپردازند اما وقتی که حجم داده ها بالا باشد ، کاربران هر چند زبر دست و با تجربه باشند نمی توانند الگوهای مفید را در میان حجم انبوه داده ها تشخیص دهند و یا اگر قادر به این کار هم باشند ،هزینه عملیات از نظر نیروی انسانی و مادی بسیار بالا است.از سوی دیگر کاربران معمولا فرضیه ای را مطرح می کنند وسپس بر اساس گزاراشات مشاهده شده به اثبات یارد فرضیه می پردازند،درحالی که امروزه نیاز به روشهایی است که اصطلاحا به کشف دانش بپردازند یعنی با کمترین دخالت کاربر وبه صورت خودکار الگوهاورابطه های منطقی رابیان نمایند. ازسوی دیگر کاربران معمولا فرضیه ای را مطرح می کنند و سپس براساسگزاراشات مشاهده شده به اثبات یا رد فرضیه می پردازند، در حالی که امروزه نیاز به روش هایی است که اصطلاحا به کشف دانشبپردازند یعنی با کمترین دخالت کاربر و به صورت خودکار الگوها و رابطه های منطقی را بیان نمایند. داده کاوی یکی از مهمترین این روشها است که به وسیله آن الگوهای مفید در داده ها با حداقل دخالت کاربران شناخته می شوند واطلاعاتی را در اختیار کاربران و تحلیل گران قرار می دهند تا براساس آنها تصمیمات مهم و حیاتی در سازمانها اتخاذ شوند. درداده کاوی از بخشی از علم آمار به نام تحلیل اکتشافی داده ها استفاده می شود که درآن بر کشف اطلاعات نهفته وناشناخته از درون حجم انبوه داده ها تاکید می شود. علاوه بر این داده کاوی با هوش مصنوعی و یادگیری ماشین نیز ارتباط تنگاتنگی دارد، بنابراین می توان گفت در داده کاوی تئوریهای پایگاه داده ها ، هوش مصنوعی ، یادگیری ماشین وعلم آماررادرهم می آمیزند تازمینه کاربردی فراهم شود. باید توجه داشت که اصطلاح داده کاوی زمانی به کار برده می شود که با حجم بزرگی از داده ها، در حد مگا یا ترابایت ، مواجه باشیم. در تمامی منابع داده کاوی براین مطلب تاکید شده است.ه هرچه حجم داده ها بیشتر و روابط میان آنها پیچیده تر باشد دسترسی به اطلاعات نهفته در میان داده ها مشکلتر می شود و نقش داده کاوی به عنوان یکی از روشهای کشف دانش ، روشن تر میگردد.

کلیدواژه‌ها:

داده کاوی ، هوش مصنوعی ، ماشین یادگیری ،علم آمار

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-CSITM02-CSITM02_086.html
کد COI مقاله: CSITM02_086

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
روزبان, زهرا؛ زهرا اسدی و پدرام اقدسی، ۱۳۹۴، داده کاوی، دومین همایش ملی مهندسی رایانه و مدیریت فناوری اطلاعات، تهران، گروه پژوهشی بوعلی، https://www.civilica.com/Paper-CSITM02-CSITM02_086.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (روزبان, زهرا؛ زهرا اسدی و پدرام اقدسی، ۱۳۹۴)
برای بار دوم به بعد: (روزبان؛ اسدی و اقدسی، ۱۳۹۴)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :

  • _ Mento and Brendon Rapple, SPEC Kit 274: _ mining ...
  • http://www.i nfotech era.com/ ...
  • http://www. irandoc. c. ir/index.htm ...
  • http : //www. d b msmag.co) _ 1998 ...
  • علم سنجی و رتبه بندی مقاله

    مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
    نوع مرکز: موسسه غیرانتفاعی
    تعداد مقالات: ۵۵۲۱
    در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

    مدیریت اطلاعات پژوهشی

    این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
  • هوش مصنوعی > هوش مصنوعی
  • هوش مصنوعی > داده کاوی
  • اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    مقالات پیشنهادی مرتبط

    مقالات مرتبط جدید

    شبکه تبلیغات علمی کشور

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.