Prediction of Strength parameters of Stabilized Sand Soil with Nonoclay Using Artificial Neural Network
محل انتشار: کنگره بین المللی علوم مهندسی و توسعه شهری پایدار
سال انتشار: 1397
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 653
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
DTUCONF01_093
تاریخ نمایه سازی: 1 دی 1397
چکیده مقاله:
Nowadays, soil stabilization and improving its strength properties has captured researchers’ attention. To achieve the objective, a variety of methods and materials are applied. One of the novel methods of soil stabilization is to combine it with nanoclay. This research seeks to predict the soil strength parameters of stabilized sand with nanoclay, using artificial neural networks. The experiments on samples mixed with different percentages of nanoclay and different processing length indicate that in a few of samples, increase in nonoclay in the soil leads to increase in the soil shear strength and in angle of friction. By the help of experimental results and a series of input (the geotechnical properties of soil samples), output (cohesion and friction angle of soil samples) and using MATLAB software several models were investigated. After training several neural networks and evaluating, and comparing the values of determination coefficients of MSE, T and R2 in each of the networks, we can conclude the neural networks that calculate parameters of cohesion coefficients and friction angles separately have better behavior and accuracy than neural networks that predicts these parameters simultaneously.
کلیدواژه ها:
نویسندگان
Mansour Saberi
Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad,Iran
Alireza Hajian
Department of Physics, Najafabad Branch, Islamic Azad University, Najafabad, Iran