CIVILICA We Respect the Science
ناشر تخصصی کنفرانسهای ایران
عنوان
مقاله

روشی جدید در انتخاب ویژگی برای دسته بندی مستندات متنی

اعتبار موردنیاز : ۱ | تعداد صفحات: ۷ | تعداد نمایش خلاصه: ۴۹۲ | نظرات: ۰
سال انتشار: ۱۳۹۲
نوع ارائه: شفاهی
کد COI مقاله: ELECOM01_102
زبان مقاله: فارسی
حجم فایل: ۵۸۶.۶ کیلوبایت (فایل این مقاله در ۷ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۷ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳,۰۰۰ تومان

آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله روشی جدید در انتخاب ویژگی برای دسته بندی مستندات متنی

  هاجر فرهمند - دانشجوی کارشناسی ارشد، دانشگاه آزاد اسلامی واحد علوم و تحقیقات بوشهر
  علی هارون آبادی - استادیار و عضو هیئت علمی، دانشگاه آزاد اسلامی واحد تهران مرکزی گروه کامپیوتر
  سید جواد میرعابدینی - استادیار و عضو هیئت علمی، دانشگاه آزاد اسلامی واحد تهران مرکزی گروه کامپیوتر

چکیده مقاله:

امروزه اطلاعات زیادی در قالب متون الکترونیکی و پایگاه های داده ای متنی ذخیره شده اند. برای استخراج دانش از این حجم بالای اطلاعات متنی، نیازمند استفاده از روش های خوشه بندی و طبقه بندی مستندات متنی هستیم. در اکثر روشهای طبقه بندی متن معمولا براساس فراوانی کلمات و در نظر گرفتن متن به صورت مجموعه ای از کلمات، طبقه بندی انجام می شود ولی چنین نمایشی باعث ابعاد بالای متون، تعداد بسیار زیاد ویژگی ها و منجر به کاهش کارایی الگوریتم های طبقه بندی می گردد. در این مقاله به منظور کاهش تعداد ویژگی ها و انتخاب ویژگی های اصلی متن، از دانش پس زمینه و تکنیکهای یادگیری ماشین استفاده شده است. در واقع با استفاده از هستان شناس وردنت و دانش پس زمینه ویژگی های اصلی متون انتخاب می شوند و با استفاده از الگویتم های یادگیری ماشین متون طبقه بندی می شوند. نتایج شبیه سازی روش پیشنهادی، نشان می دهد بهبود موثری در کاهش ابعاد متن و در نتیجه افزایش کارایی طبقه بندی متن ایجاد شده است.

کلیدواژه‌ها:

انتخاب ویژگی، طبقه بندی متن، هستان شناسی، یادگیری ماشین

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-ELECOM01-ELECOM01_102.html
کد COI مقاله: ELECOM01_102

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
فرهمند, هاجر؛ علی هارون آبادی و سید جواد میرعابدینی، ۱۳۹۲، روشی جدید در انتخاب ویژگی برای دسته بندی مستندات متنی، اولین همایش منطقه ای بهینه سازی و روشهای محاسبه نرم در مهندسی برق و کامپیوتر، صفاشهر، دانشگاه آزاد اسلامی واحد صفاشهر، https://www.civilica.com/Paper-ELECOM01-ELECOM01_102.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (فرهمند, هاجر؛ علی هارون آبادی و سید جواد میرعابدینی، ۱۳۹۲)
برای بار دوم به بعد: (فرهمند؛ هارون آبادی و میرعابدینی، ۱۳۹۲)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :

  • D.D. Lewis, Y. Yang, T. Rose, F. Li, :RCV1: A ...
  • A. Hotho, S. Staab, G. Stumme, "Ontologies Improve Text Clustering", ...
  • A. McCallum, K. Nigam, "A comparison of event models for ...
  • T. Wang; H. Chiang, "Fuzzy support vector machine for multi- ...
  • C. Cardie, "Using decision tree to improve case based learning, ...
  • H. Schutze, D. Hull, J. O. Pedersen, "A comparison of ...
  • Verlag, Heidelberg, Pages 188, 1995-200, ...
  • Y. Yang, J.P. Pedersen, _ Comparative Study on Feature Selection ...
  • Y. Yang, X. Liu, _ Re-examination of Text Categorization Methods", ...
  • D. Bracewell, F. Ren, S. Kuroiwa, "Mulilingual Single Document Keyword ...
  • T. Joachims, :-Text Categorization with Support Vector Machines: ...
  • Z. Zheng, R. Srihari, "Optimally Combining Positive and Negative Features ...
  • علم سنجی و رتبه بندی مقاله

    مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
    نوع مرکز: دانشگاه آزاد
    تعداد مقالات: ۳۷۷۴
    در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

    مدیریت اطلاعات پژوهشی

    اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    مقالات مرتبط جدید

    شبکه تبلیغات علمی کشور

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.