CIVILICA We Respect the Science
ناشر تخصصی کنفرانسهای ایران
عنوان
مقاله

تحلیل مشخصه های سیگنال در حوزه زمان به منظور تشخیص نوع رژیم و تعیین درصد حجمی در سیالات دو فازی

اعتبار موردنیاز : ۱ | تعداد صفحات: ۱۳ | تعداد نمایش خلاصه: ۴۴ | نظرات: ۰
سال انتشار: ۱۳۹۷
کد COI مقاله: ELECTRICA05_007
زبان مقاله: فارسی
حجم فایل: ۱.۲۳ مگابات (فایل این مقاله در ۱۳ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۱۳ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳,۰۰۰ تومان

آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله تحلیل مشخصه های سیگنال در حوزه زمان به منظور تشخیص نوع رژیم و تعیین درصد حجمی در سیالات دو فازی

  محمدامیر ستاری - دانشجوی کارشناسی ارشد، دانشگاه صنعتی کرمانشاه
  نسترن کرانی - دانشجوی دکتری، پژوهشگاه علوم و فنون هسته ای
احسان ناظمی - استادیار، دانشگاه ژشوف لهستان
  غلامحسین روشنی - استادیار، دانشگاه صنعتی کرمانشاه

چکیده مقاله:

جریان های چند فازی به ویژه دو فازی در صنایع مختلف از جمله صنایع نفت و گاز به وقوع می پیوندد. به دلیل رفتار فازی ویژه سیستم های هیدروکربنی علاوه بر مراحل برداشت از مخازن، در خطوط انتقال فرآورده های هیدروکربن؛ هم قبل و هم بعد از مراحل جداسازی؛ امکان روبروش دن با چنین جریان هایی وجود دارد. در این مطالعه سعی بر آن شد؛ که برای تشخیص نوع رژیم و تعیین درصد حجمی؛ با استفاده از شبکه عصبی مصنوعی؛ بهترین مشخصه در حوزه زمان استخراج شود. در این تحقیق با استفاده از شبیه ساز کد مونت کارلو سه رژیم حلقوی، لایه ای و همگن، در بازه ی گسر خالی (90%-5%) شبیه سازی شد. در این شبیه سازی از یک چشمه سزیم 137 و دو آشکار ساز Nal برای ثبت فتون های عبوری استفاده شد. داده های به دست آمده از شبیه سازی دارای نویز فرکانس بالا بود. برای حذف نویز فرکانس بالا از فیلتر ساویتزکی گولای استفاده شد. سپس از داده های به دست آماده هشت مشخصه مختلفغ در حوزه زمان استخراج، و با یکدیگر مقایسه شد. سرانجام با توجه به عدم توانایی هر یک از مشخصه ها به صورت جداگانه برای جداسازی رژیم ها و درصدهای حجمی تصمیم بر آن شد از تمامی مشخصه های استخراج شده از هر دو آشکارساز به عنوان ورودی، برای آموزش، اعتبارسنجی و تست در شبکه عصبی مصنوعی پرسپترون چند لایه، در فضای نرم افزار متلب، مورد استفاده قرار گیرد. در این پژوهش دو شبکه عصبی مصنوعی برای تشخیص نوع رژیم و پیشبینی درصد حجمی طراحی شد. تشخیص 100% نوع رژیم جریانی و میانگین مربع خطا کمتر از 0/56 برای پیشبینی درصد حجمی، نشان دهنده اهمیت استخراج مشخص در بالا بردن دقت شبکه های عصبی می باشد.

کلیدواژه‌ها:

استخراج مشخصه، سیالات دوفازی، شبکه عصبی، شبیه ساز کد مونت کارلو، فیلتر ساویتزکی گولای

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-ELECTRICA05-ELECTRICA05_007.html
کد COI مقاله: ELECTRICA05_007

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
ستاری, محمدامیر؛ نسترن کرانی؛ احسان ناظمی و غلامحسین روشنی، ۱۳۹۷، تحلیل مشخصه های سیگنال در حوزه زمان به منظور تشخیص نوع رژیم و تعیین درصد حجمی در سیالات دو فازی، سیزدهمین سمپوزیوم بین المللی پیشرفت های علوم و تکنولوژی:سرزمین پایدار، پژوهش های نوین در مهندسی برق و پزشکی، مشهد، موسسه آموزش عالی خاوران- دانشگاه شهید رجایی- انجمن علوم و فنون دریایی، https://www.civilica.com/Paper-ELECTRICA05-ELECTRICA05_007.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (ستاری, محمدامیر؛ نسترن کرانی؛ احسان ناظمی و غلامحسین روشنی، ۱۳۹۷)
برای بار دوم به بعد: (ستاری؛ کرانی؛ ناظمی و روشنی، ۱۳۹۷)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز: دانشگاه دولتی
تعداد مقالات: ۴۰۵
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مدیریت اطلاعات پژوهشی

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

مقالات پیشنهادی مرتبط

مقالات مرتبط جدید

شبکه تبلیغات علمی کشور

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.