CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

Individual Teeth Segmentation in CBCT and MSCT Dental Images Using Watershed

اعتبار موردنیاز PDF: ۰ | تعداد صفحات: ۴ | تعداد نمایش خلاصه: ۴۱۶ | نظرات: ۰
سال انتشار: ۱۳۹۲
کد COI مقاله: ICBME20_017
زبان مقاله: انگلیسی
حجم فایل: ۴۴۳.۳۷ کیلوبایت
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

راهنمای دانلود فایل کامل این مقاله

متن کامل این مقاله منتشر نشده و درپایگاه سیویلیکا موجود نمی باشد.

منبع مقالات سیویلیکا دبیرخانه کنفرانسها و مجلات می باشد. برخی از دبیرخانه ها اقدام به انتشار اصل مقاله نمی نمایند. به منظور تکمیل بانک مقالات موجود، چکیده این مقالات در سایت درج می شوند ولی به دلیل عدم انتشار اصل مقاله، امکان ارائه آن وجود ندارد.

خرید و دانلود فایل PDF مقاله

متن کامل (فول تکست) این مقاله منتشر نشده و یا در سایت موجود نیست و امکان خرید آن فراهم نمی باشد

مشخصات نویسندگان مقاله Individual Teeth Segmentation in CBCT and MSCT Dental Images Using Watershed

  Mahsa Sepehrian - School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
  Ali M. Deylami - School of Electrical and Computer Engineering, College of Engineering, Tarbiat Modares University Tehran, Iran
  Reza A. Zoroofi - School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran

چکیده مقاله:

Teeth segmentation is an important step in human identification and Content Based Image Retrieval (CBIR) systems. This paper proposes a new approach for teethsegmentation using morphological operations and watershed algorithm. In Cone Beam Computer Tomography (CBCT) and Multi Slice Computer Tomography (MSCT) each tooth is an elliptic shape region that cannot be separated only by considering their pixels’ intensity values. For segmenting a tooth from theimage, some enhancement is necessary. We use morphological operators such as image filling and image opening to enhance theimage. In the proposed algorithm, a Maximum Intensity Projection (MIP) mask is used to separate teeth regions fromblack and bony areas. Then each tooth is separated using the watershed algorithm. Anatomical constraints are used to overcome the over segmentation problem in watershed method.The results show a high accuracy for the proposed algorithm in segmenting teeth. Proposed method decreases time consuming by considering only one image of CBCT and MSCT for segmenting teeth instead of using all slices.

کلیدواژه‌ها:

Dental x-ray segmentation, CBIR, Human Identification, watershed, morphological operation

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-ICBME20-ICBME20_017.html
کد COI مقاله: ICBME20_017

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Sepehrian, Mahsa; Ali M. Deylami & Reza A. Zoroofi, ۱۳۹۲, Individual Teeth Segmentation in CBCT and MSCT Dental Images Using Watershed, بیستمین کنفرانس مهندسی زیست پزشکی ایران, تهران, دانشگاه تهران, https://www.civilica.com/Paper-ICBME20-ICBME20_017.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Sepehrian, Mahsa; Ali M. Deylami & Reza A. Zoroofi, ۱۳۹۲)
برای بار دوم به بعد: (Sepehrian; Deylami & Zoroofi, ۱۳۹۲)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز: دانشگاه دولتی
تعداد مقالات: ۴۳۶۵۷
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مدیریت اطلاعات پژوهشی

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

مقالات مرتبط جدید

شبکه تبلیغات علمی کشور

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.