CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

Predicting termination of Paroxysmal atrial fibrillation using higher order statistics in EMD domain

اعتبار موردنیاز: ۱ | تعداد صفحات: ۶ | تعداد نمایش خلاصه: ۲۳۷ | نظرات: ۰
سال انتشار: ۱۳۹۲
کد COI مقاله: ICBME20_047
زبان مقاله: انگلیسی
فایل PDF حاوی متن کامل این مقاله در حال حاضر در سایت موجود نمی‌باشد.

راهنمای دانلود فایل کامل این مقاله

متن کامل این مقاله منتشر نشده و درپایگاه سیویلیکا موجود نمی باشد.

منبع مقالات سیویلیکا دبیرخانه کنفرانسها است. برخی از دبیرخانه ها اقدام به انتشار اصل مقاله نمی نمایند. به منظور تکمیل بانک مقالات موجود، چکیده این مقالات در سایت درج می شوند ولی به دلیل عدم انتشار اصل مقاله، امکان ارائه آن وجود ندارد.

خرید و دانلود PDF مقاله

اصل مقاله (فول تکست) فوق منتشر نشده و یا در سایت موجود نیست و امکان خرید آن فراهم نمی باشد

مشخصات نویسندگان مقاله Predicting termination of Paroxysmal atrial fibrillation using higher order statistics in EMD domain

  Maryam Mohebbi - Assistant professor of biomedical engineering Faculty of Electrical and Computer Engineering K.N.Toosi University of Technology Tehran, IRAN

چکیده مقاله:

This paper presents an algorithm for predicting termination of paroxysmal atrial fibrillation (PAF) attacks by using higher order statistical moments of RR-intervals signalcalculated in the empirical mode decomposition (EMD) domain. In the proposed method, RR-intervals signal is decomposed intoa set of intrinsic mode functions (IMF) and higher order moments including variance, skewness, and kurtosis, calculated from the first four IMFs. The appropriateness of these features inpredicting the termination of PAF is studied using atrial fibrillation termination database (AFTDB) which consists of 3types of AF episodes: N-type (non-terminated AF episode), S-type (terminated 1 min after the end of the record), and T-type(terminated immediately after the end of the record). By using aSupport vector machine (SVM) classifier for classification of PAF episodes, we obtained sensitivity, specificity, and positivepredictivity 93.45%, 96.73%, and 94.84%, respectively. The important advantage of the proposed method comparing to theother existing approaches is that our algorithm can simultaneously discriminate 3 types of AF episodes with high accuracy. The results demonstrate that the extracted features in EMD domain can be used as a suitable tool for predicting termination of PAF.

کلیدواژه‌ها:

empirical mode decomposition , Higher order statistics , paroxysmal atrial fibrillation , RR-intervals signal

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-ICBME20-ICBME20_047.html
کد COI مقاله: ICBME20_047

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Mohebbi, Maryam, ۱۳۹۲, Predicting termination of Paroxysmal atrial fibrillation using higher order statistics in EMD domain, بیستمین کنفرانس مهندسی زیست پزشکی ایران, تهران, دانشگاه تهران, https://www.civilica.com/Paper-ICBME20-ICBME20_047.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Mohebbi, Maryam, ۱۳۹۲)
برای بار دوم به بعد: (Mohebbi, ۱۳۹۲)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز:
تعداد مقالات: ۱۲۴۵۶
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مدیریت اطلاعات پژوهشی

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

مقالات مرتبط جدید

شبکه تبلیغات علمی کشور

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.