CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

Artificial neural networks as a corrector of hydrodynamic modelling results

اعتبار موردنیاز PDF: ۱ | تعداد صفحات: ۸ | تعداد نمایش خلاصه: ۱۰۴۵ | نظرات: ۰
سرفصل ارائه مقاله: Water Resources, Geotechnics and Transportation
سال انتشار: ۱۳۸۲
کد COI مقاله: ICCE06_423_7695418618
زبان مقاله: انگلیسی
حجم فایل: ۲۶۷.۵ کیلوبایت (فایل این مقاله در ۸ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

متن کامل این مقاله دارای ۸ صفحه در فرمت PDF قابل خریداری است. شما می توانید از طریق بخش روبرو فایل PDF این مقاله را با پرداخت اینترنتی ۳۰,۰۰۰ ریال بلافاصله دریافت فرمایید
قبل از اقدام به دریافت یا خرید مقاله، حتما به فرمت مقاله و تعداد صفحات مقاله دقت کامل را مبذول فرمایید.
علاوه بر خرید تک مقاله، می توانید با عضویت در سیویلیکا مقالات را به صورت اعتباری دریافت و ۲۰ تا ۳۰ درصد کمتر برای دریافت مقالات بپردازید. اعضای سیویلیکا می توانند صفحات تخصصی شخصی روی این مجموعه ایجاد نمایند.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود فایل PDF مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۸ صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله Artificial neural networks as a corrector of hydrodynamic modelling results

Nigel G. Wright - School of Civil engineering, University of Nottingham, Nottingham NG7 2RD, UK
Mohammad T Dastorani - School of Civil engineering, University of Nottingham, Nottingham NG7 2RD, UK

چکیده مقاله:

In this paper, the application of artificial neural networks (ANN) to optimise the results obtained from a hydrodynamic model of river flow was evaluated. The study area is Reynolds Creek Experimental Watershed in southwest Idaho, USA. A hydrodynamic model was constructed to predict flow at theoutlet using time series data from upstream gauging sites as boundary conditions. In the second stage, the model was replaced with an ANN model but with the same inputs. Finally the error of the hydrodynamic model was predicted using an ANN model to optimise the outputs. Simulations were carried out for two different conditions (with and without data from a recently suspended gauging site) to evaluate the effect of this suspension in hydrodynamic, ANN and the combined model. Using ANN in this way, the error produced by the hydrodynamic model is predicted and thereby, the results of the model are improved. In addition, the results of hydrodynamic modelling affected by the suspension of the flow gauging is appropriately improved by neural networks. Combination of these two techniques for this specific application uses the potential of both methods and shows a good performance

کلیدواژه‌ها:

Combination of hydrodynamic and ANN, model results optimisation, error prediction, flow prediction by ANN, Neural networks for flood prediction

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-ICCE06-ICCE06_423_7695418618.html
کد COI مقاله: ICCE06_423_7695418618

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Nigel G. Wright, & Mohammad T Dastorani, ۱۳۸۲, Artificial neural networks as a corrector of hydrodynamic modelling results, ششمین کنفرانس بین المللی مهندسی عمران, اصفهان, دانشگاه صنعتی اصفهان, عمران, https://www.civilica.com/Paper-ICCE06-ICCE06_423_7695418618.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Nigel G. Wright, & Mohammad T Dastorani, ۱۳۸۲)
برای بار دوم به بعد: (Nigel G. Wright & Dastorani, ۱۳۸۲)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :

  • Hanson, C. L., Marks, D. and van Vactor, S. S., ...
  • Hanson C. L., *Precipitation monitoring at the Reynolds Creek Experimental ...
  • Marks, D., Cooley, K. R., Robertson, D. C. and Winstral, ...
  • NeuroDimens ions, NeuroSo lutions, _ _ 2001. ...
  • Pierson, F. B., Slaughter, C. W. and Cram, Z. K., ...
  • Seyfried, M. S., Harris, R C., Marks, D. and Jacob, ...
  • Slaughter C. W., Marks, D., Flerchinger, G. N., van Vactor, ...
  • USDA-ARS Northwest Watershed Research Center anonynmous ftp site: ftp.nwrc.ars. usda.gov. ...
  • Wright, N.G., Dastorani, M. T., Goodwin, P. and Slaughter, C. ...
  • مدیریت اطلاعات پژوهشی

    اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    مقالات مرتبط جدید

    شبکه تبلیغات علمی کشور

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.