CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

Artificial neural networks as a corrector of hydrodynamic modelling results

اعتبار موردنیاز: ۱ | تعداد صفحات: ۸ | تعداد نمایش خلاصه: ۱۰۱۲ | نظرات: ۰
سرفصل ارائه مقاله: Water Resources, Geotechnics and Transportation
سال انتشار: ۱۳۸۲
کد COI مقاله: ICCE06_423_7695418618
زبان مقاله: انگلیسی
حجم فایل: ۲۶۷.۵ کلیوبایت (فایل این مقاله در ۸ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید. در پایگاه سیویلیکا عموما مقالات زیر ۵ صفحه فولتکست محسوب نمی شوند و برای خرید اینترنتی عرضه نمی شوند.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود PDF مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۸ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳۰,۰۰۰ ریال

آدرس ایمیل خود را در زیر وارد نموده و کلید خرید با پرداخت اینترنتی را بزنید. آدرس ایمیل:

رفتن به مرحله بعد:

در صورت بروز هر گونه مشکل در روند خرید اینترنتی، بخش پشتیبانی کاربران آماده پاسخگویی به مشکلات و سوالات شما می باشد.

مشخصات نویسندگان مقاله Artificial neural networks as a corrector of hydrodynamic modelling results

Nigel G. Wright - School of Civil engineering, University of Nottingham, Nottingham NG7 2RD, UK
Mohammad T Dastorani - School of Civil engineering, University of Nottingham, Nottingham NG7 2RD, UK

چکیده مقاله:

In this paper, the application of artificial neural networks (ANN) to optimise the results obtained from a hydrodynamic model of river flow was evaluated. The study area is Reynolds Creek Experimental Watershed in southwest Idaho, USA. A hydrodynamic model was constructed to predict flow at theoutlet using time series data from upstream gauging sites as boundary conditions. In the second stage, the model was replaced with an ANN model but with the same inputs. Finally the error of the hydrodynamic model was predicted using an ANN model to optimise the outputs. Simulations were carried out for two different conditions (with and without data from a recently suspended gauging site) to evaluate the effect of this suspension in hydrodynamic, ANN and the combined model. Using ANN in this way, the error produced by the hydrodynamic model is predicted and thereby, the results of the model are improved. In addition, the results of hydrodynamic modelling affected by the suspension of the flow gauging is appropriately improved by neural networks. Combination of these two techniques for this specific application uses the potential of both methods and shows a good performance

کلیدواژه‌ها:

Combination of hydrodynamic and ANN, model results optimisation, error prediction, flow prediction by ANN, Neural networks for flood prediction.

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-ICCE06-ICCE06_423_7695418618.html
کد COI مقاله: ICCE06_423_7695418618

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Nigel G. Wright, & Mohammad T Dastorani, ۱۳۸۲, Artificial neural networks as a corrector of hydrodynamic modelling results, ششمین کنفرانس بین المللی مهندسی عمران, اصفهان, دانشگاه صنعتی اصفهان, عمران, https://www.civilica.com/Paper-ICCE06-ICCE06_423_7695418618.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Nigel G. Wright, & Mohammad T Dastorani, ۱۳۸۲)
برای بار دوم به بعد: (Nigel G. Wright & Dastorani, ۱۳۸۲)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :

  • Hanson, C. L., Marks, D. and van Vactor, S. S., ...
  • Hanson C. L., *Precipitation monitoring at the Reynolds Creek Experimental ...
  • Marks, D., Cooley, K. R., Robertson, D. C. and Winstral, ...
  • NeuroDimens ions, NeuroSo lutions, _ _ 2001. ...
  • Pierson, F. B., Slaughter, C. W. and Cram, Z. K., ...
  • Seyfried, M. S., Harris, R C., Marks, D. and Jacob, ...
  • Slaughter C. W., Marks, D., Flerchinger, G. N., van Vactor, ...
  • USDA-ARS Northwest Watershed Research Center anonynmous ftp site: ftp.nwrc.ars. usda.gov. ...
  • Wright, N.G., Dastorani, M. T., Goodwin, P. and Slaughter, C. ...
  • مدیریت اطلاعات پژوهشی

    اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    مقالات پیشنهادی مرتبط

    مقالات مرتبط جدید

    شبکه تبلیغات علمی کشور

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.