CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

F azzy Wavelet coeffi cients Discriminator For ECG Arrhvthmia Detection In Two Leads

اعتبار موردنیاز: ۱ | تعداد صفحات: ۶ | تعداد نمایش خلاصه: ۱۶۵۲ | نظرات: ۰
سرفصل ارائه مقاله: مهندسی پزشکی / Biomedical Engineering
سال انتشار: ۱۳۸۶
کد COI مقاله: ICEE15_021
زبان مقاله: انگلیسی
حجم فایل: ۶۸۶.۵۷ کلیوبایت (فایل این مقاله در ۶ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید. در پایگاه سیویلیکا عموما مقالات زیر ۵ صفحه فولتکست محسوب نمی شوند و برای خرید اینترنتی عرضه نمی شوند.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود PDF مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۶ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳۰,۰۰۰ ریال

آدرس ایمیل خود را در زیر وارد نموده و کلید خرید با پرداخت اینترنتی را بزنید. آدرس ایمیل:

رفتن به مرحله بعد:

در صورت بروز هر گونه مشکل در روند خرید اینترنتی، بخش پشتیبانی کاربران آماده پاسخگویی به مشکلات و سوالات شما می باشد.

مشخصات نویسندگان مقاله F azzy Wavelet coeffi cients Discriminator For ECG Arrhvthmia Detection In Two Leads

  Payam Bahman-Bijari - Control and Intelligent Processing Center of Excellence, Electrical and Computer Engineering Department, University of Tehran, Tehran, lran , School of Cognitive Sciences, Institute for Studies in Theoreticat Physics and Nlathematics (IPNI), Tehran, Iran
  Alireza Akhoundi-Asl - Control and Intelligent Processing Center of Excellence, Electrical and Computer Engineering Department, University of Tehran, Tehran, lran , School of Cognitive Sciences, Institute for Studies in Theoreticat Physics and Nlathematics (IPNI), Tehran, Iran
Fariba Bahrami -
  Ali Jalali - Faculty of Mechanical Engineering, Khaje Nasir Toosi University of Technology.

چکیده مقاله:

Automatic classification of cardiac arrhythmia is a challenging area in the field of heart abnormality detection. Conventional methods used to
classify arrhythmia use feature based inforntation related lo ECG signal. In this paper a novel methocl is introduced, to extract specific ntedical idormation using ECG data from leads containing this information for each arrhythmia. We have shown that using L'l in addition to VII improves the results of classification In fact, in data obtained from L'l special patterns appear which deal with Lefi Bundle Branch Block Beat (LBBB)
and Right Bundle Branch Block Beat (RBBB), and this information helps medical doctors to detect arrhythmia. Adding this feature to the classification algorithm increases the accuracy while resztlting in less complex classifiers. After including the dala of the leads with accurate infonnation about each anhythmia, we reduced exlrentely the number of inputs wing a Fuzzy set-based feature extraction method. Ilavelet
coefficients of the ECG signal were fed into a simple preceptron neural network consisting of one hidden layer as input Since specifc leads were used high accuracy was achieved despite the reduced number of inputs and the simplicity of the network In the present work the ECC data is taken from standard MIT-BIT Arrhythmia database

کلیدواژه‌ها:

Arrhythmia, ECG, Wavelet, Neural Network

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-ICEE15-ICEE15_021.html
کد COI مقاله: ICEE15_021

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Bahman-Bijari, Payam; Alireza Akhoundi-Asl; Fariba Bahrami & Ali Jalali, ۱۳۸۶, F azzy Wavelet coeffi cients Discriminator For ECG Arrhvthmia Detection In Two Leads, پانزدهیمن کنفرانس مهندسی برق ایران, تهران, مرکز تحقیقات مخابرات ایران, https://www.civilica.com/Paper-ICEE15-ICEE15_021.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Bahman-Bijari, Payam; Alireza Akhoundi-Asl; Fariba Bahrami & Ali Jalali, ۱۳۸۶)
برای بار دوم به بعد: (Bahman-Bijari; Akhoundi-Asl; Bahrami & Jalali, ۱۳۸۶)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :

  • R. Jafari, H. Noshadi, S. Ghiasi and M. Sarrafzadeh, «Adaptive ...
  • P. S. Addison, ، Wavelet transforms and the ECG: a ...
  • A. Langer, M. S. Heilman, and M. M. Mower ، ...
  • S. Chen, N. V. Thakor, and M. M. Mower ، ...
  • Detecting؛ [5] V. X. Afonso, and W. J. Tompkins Ventricular ...
  • L. Sornmo, P. O. Borjesson, _ E. Nygards, and O. ...
  • _ A. Coast, R. M. Sterm, G. G. Cano, and ...
  • Proc. Iht. Conf. qy Convergent Technologies for Asia-Pacific Region. Vol. ...
  • Usingث [۱۴] L. Y. Shyu, Y. HH. Wu, and _ ...
  • C.S. Burrus, R.A. Gopinath and H. Guo, Introduc tion to ...
  • J. S. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms. ...
  • [[8] D. Li, 7. Pedrycs, N.J.Pizzi, *Fuzzy Vavelet Based Feature ...
  • ، Heart Disease، Baunwald، 7" edition, W B Saunders Co.. ...
  • diagnosis using neural networks, in Proc Anxu Iht. Cong. IEEE ...
  • S. Osowski, and T. H. Linh, ،ECG beat recognition using ...
  • P. S. Addison, J. N. Watson, G. R. Clegg, M. ...
  • A. Rakotom amonjy _ D. Coast, and P. marche, ، ...
  • علم سنجی و رتبه بندی مقاله

    مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
    نوع مرکز:
    تعداد مقالات: ۶۳۷۹۷
    در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

    مدیریت اطلاعات پژوهشی

    اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    مقالات مرتبط جدید

    شبکه تبلیغات علمی کشور

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.