CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

یادگیری تقویتی با استفاده از نقشه های خودسازمان ده رشد یابنده

اعتبار موردنیاز: ۱ | تعداد صفحات: ۷ | تعداد نمایش خلاصه: ۱۱۱۹ | نظرات: ۰
سرفصل ارائه مقاله: کامپیوتر / Computer
سال انتشار: ۱۳۸۶
کد COI مقاله: ICEE15_267
زبان مقاله: فارسی
حجم فایل: ۷۴۶.۵۹ کلیوبایت (فایل این مقاله در ۷ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید. در پایگاه سیویلیکا عموما مقالات زیر ۵ صفحه فولتکست محسوب نمی شوند و برای خرید اینترنتی عرضه نمی شوند.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود PDF مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۷ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳۰,۰۰۰ ریال

آدرس ایمیل خود را در زیر وارد نموده و کلید خرید با پرداخت اینترنتی را بزنید. آدرس ایمیل:

رفتن به مرحله بعد:

در صورت بروز هر گونه مشکل در روند خرید اینترنتی، بخش پشتیبانی کاربران آماده پاسخگویی به مشکلات و سوالات شما می باشد.

مشخصات نویسندگان مقاله یادگیری تقویتی با استفاده از نقشه های خودسازمان ده رشد یابنده

  حسام منتظری - دانشکده کامپیوتر و فناوری اطلاعات، دانشگاه صنعتی امیرکبیر
  سجاد مرادی - دانشکده کامپیوتر و فناوری اطلاعات، دانشگاه صنعتی امیرکبیر
  رضا صفابخش - دانشکده کامپیوتر و فناوری اطلاعات، دانشگاه صنعتی امیرکبیر

چکیده مقاله:

این مقاله ارائه و تعمیم فضای پیوسته وضعیت و عمل را در مساله یادگیری تقویتی بررسی می کند. مدل پیشنهادی فضای وضعیت و عمل روش تقویتی را با استفاده از نقشه های خود سازمان ده رشد یابنده ارائه می کند. نقشه های خود سازمان ده رشد یابنده، تقریب فضای مساله را با حذف و اضافه کردن نورون انجام می دهند. نشان داده شده است که نقشه های رشد یابنده عملکرد بهتری نسبت به نقشه خود سازمان ده استاندارد در حفظ توپولوژی ، کاهش خطای کوانتیزاسیون ، و تقریب توزیع نا ایستا دارند. پیش از این یادگیری تقویتی با استفاده از نقشه های خود سازمان ده استاندارد مورد استفاده قرار گرفته بود، اما علی رغم مزیت نقشه های خود سازمان ده رشد یابنده به نقشه خود سازمان ده استاندارد، ترکیب یادگیری تقویتی با نقشه های خود سازمان ده رشد یابنده به دلیل تعداد متغیر نورون های آن امکانپذیر نبود. در این مقاله الگوریتم یادگیری تقویتی جدیدی مبتنی بر این نوع نقشه ها ارائه شده است که دارای جدول کیو رشد یابنده است که در اننحوه مقدار دهی اولیه، رشد، و بروز رسانی جدول کیومورد بررسی قرار گرفته است. نتایج آزمایشات تجربی که در برکاردی از رباتیک، حاکی ازموفقیت روش ارائه شده است.

کلیدواژه‌ها:

تعمیم ، فضای وضعیت و عمل پیوسته ، نقشه های خود سازمان ده رشد یابنده ، یادگیری تقویتی

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-ICEE15-ICEE15_267.html
کد COI مقاله: ICEE15_267

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
منتظری, حسام؛ سجاد مرادی و رضا صفابخش، ۱۳۸۶، یادگیری تقویتی با استفاده از نقشه های خودسازمان ده رشد یابنده، پانزدهیمن کنفرانس مهندسی برق ایران، تهران، مرکز تحقیقات مخابرات ایران، https://www.civilica.com/Paper-ICEE15-ICEE15_267.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (منتظری, حسام؛ سجاد مرادی و رضا صفابخش، ۱۳۸۶)
برای بار دوم به بعد: (منتظری؛ مرادی و صفابخش، ۱۳۸۶)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :

  • Sutton, R s and Barto, A, G (1998) Reinforcement Learring. ...
  • Bertsekas, D P and Tsitsiklis, J N., Neural Dyramic Programming ...
  • Smth, A J , Dynamic generalisation of continuous action Spaces ...
  • _ Eagan and etc all, Applying Reinforcement Learning _ Traffic ...
  • B Abdulhai and etc all, Reinforcement Learning for True Adaptive ...
  • P Stone and R s. Sutton, "'Scal ing Reinforcement Learning ...
  • Lin, L J. Reinforcement Learring for Robots using Neural _ ...
  • Sutton, R S Generalization in reinforcement learning: Successful examples using ...
  • Albus, J. A new approach top manipulator control: The cerebellar ...
  • Smith, A _ Applications of the self-organising map to reinforcement ...
  • Sehad, _ and Touzet, C. Self-organising map for reinforcement learning: ...
  • B Fritzke A growing neural gas network learins topologies. In ...
  • B Fritzke, Some Competitive Learning Methods, Systems Biophysics: Institute for ...
  • Kohonen Feature Maps and Growing Cell Structures- a Pertformance Comparison, ...
  • Kohonen, T Self Orgarising Maps s pringer-Verlag, Berlin, 1995, ...
  • T M Martinetz and K. J. Schulten A "neural-gas" network ...
  • B. Fritzke Growing Self-organizing Networks- Why?, European Symposium on Artificial ...
  • علم سنجی و رتبه بندی مقاله

    مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
    نوع مرکز:
    تعداد مقالات: ۲۹۴۸۱
    در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

    مدیریت اطلاعات پژوهشی

    اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    مقالات مرتبط جدید

    شبکه تبلیغات علمی کشور

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.