CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

Introducing an Incremental Learning Method for Neuro-fuzzy Models with the Application to Forecast Natural Chaotic Dynamics

اعتبار موردنیاز: ۱ | تعداد صفحات: ۶ | تعداد نمایش خلاصه: ۱۵۲۱ | نظرات: ۰
سرفصل ارائه مقاله: کنترل / Control
سال انتشار: ۱۳۸۶
کد COI مقاله: ICEE15_317
زبان مقاله: انگلیسی
حجم فایل: ۷۵۶.۱۶ کلیوبایت (فایل این مقاله در ۶ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید. در پایگاه سیویلیکا عموما مقالات زیر ۵ صفحه فولتکست محسوب نمی شوند و برای خرید اینترنتی عرضه نمی شوند.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود PDF مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۶ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳۰,۰۰۰ ریال

آدرس ایمیل خود را در زیر وارد نموده و کلید خرید با پرداخت اینترنتی را بزنید. آدرس ایمیل:

رفتن به مرحله بعد:

در صورت بروز هر گونه مشکل در روند خرید اینترنتی، بخش پشتیبانی کاربران آماده پاسخگویی به مشکلات و سوالات شما می باشد.

مشخصات نویسندگان مقاله Introducing an Incremental Learning Method for Neuro-fuzzy Models with the Application to Forecast Natural Chaotic Dynamics

  Elahe Ahmadi - Sharif University of Technology
  Masoud Mirmomeni - University of Tehran
  Caro Lucas - University of Tehran

چکیده مقاله:

Predicting jiiture behavior of chaotic time series and systems is a challenging area in nonlinear prediction. The prediction uccurucy of
chaotic time series is extremely dependent on the model and on the learning algorithm. In addition, the generalization property of the proposed odels trained by limited observations is of great importance. In this study, the recently developed neuro-ftzzyin terpretation of locally linear models, which have led to the introduction of intuitive incremental learning algorithms e.g. LoLiMoT, are implemented in their optima1 structure to be compared with several other methods in forecasting natural chaotic dynamics. The scope of paper is to reveal the advantages of neuro-$tizzy
models in comparison with the most successful neural and ji~zzy approaches in their best structures in predicting chaotic dynamics according to prediction accuracy, generalization, and computational complexity. The Muckey-Glass chaotic time series us a benchmark and Sunspot
number and Darwin sea level pressures time series are considered as practical examples of chaotic time series

کلیدواژه‌ها:

forecasting, chaotic time series, locally linear newo-fuzzy model, LoLiMoT.

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-ICEE15-ICEE15_317.html
کد COI مقاله: ICEE15_317

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Ahmadi, Elahe; Masoud Mirmomeni & Caro Lucas, ۱۳۸۶, Introducing an Incremental Learning Method for Neuro-fuzzy Models with the Application to Forecast Natural Chaotic Dynamics, پانزدهیمن کنفرانس مهندسی برق ایران, تهران, مرکز تحقیقات مخابرات ایران, https://www.civilica.com/Paper-ICEE15-ICEE15_317.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Ahmadi, Elahe; Masoud Mirmomeni & Caro Lucas, ۱۳۸۶)
برای بار دوم به بعد: (Ahmadi; Mirmomeni & Lucas, ۱۳۸۶)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :

  • O. Nelles, Nonlinear system identification, Springer Verlag, Berlin, 2001. ...
  • s. Haykin, Neural Networks: A Compreh ensive Foundation, Macmillan, New ...
  • A. Cichoki, R. Chichester, Neural networks fr optimization and signal ...
  • J. Park, I. _ Sandberg, "App roximation and radial basis ...
  • B. Lillekjendlie, _ Kugiumtzis, _ C hristophersen, ،Chaotic time series, ...
  • H. Leung, T. Lo, s. Wang, ،Prediction of noisy chaotic ...
  • L. Cao, Y. Hong, H. Fang, and G. He, «Predicting ...
  • علم سنجی و رتبه بندی مقاله

    مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
    نوع مرکز:
    تعداد مقالات: ۱۸۲۵۲
    در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

    مدیریت اطلاعات پژوهشی

    اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    مقالات مرتبط جدید

    شبکه تبلیغات علمی کشور

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.