CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

Integration of Artificial Neural Networks and Time serie s technique to Estimate Electrical Energy consumption

اعتبار موردنیاز: ۱ | تعداد صفحات: ۶ | تعداد نمایش خلاصه: ۱۵۵۰ | نظرات: ۰
سرفصل ارائه مقاله: مدلسازی و برنامه ریزی انرژی
سال انتشار: ۱۳۸۵
نوع ارائه: پوستر
کد COI مقاله: ICEMP01_058
زبان مقاله: انگلیسی
حجم فایل: ۱۱۸.۷۱ کلیوبایت (فایل این مقاله در ۶ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید. در پایگاه سیویلیکا عموما مقالات زیر ۵ صفحه فولتکست محسوب نمی شوند و برای خرید اینترنتی عرضه نمی شوند.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود PDF مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۶ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳۰,۰۰۰ ریال

آدرس ایمیل خود را در زیر وارد نموده و کلید خرید با پرداخت اینترنتی را بزنید. آدرس ایمیل:

رفتن به مرحله بعد:

در صورت بروز هر گونه مشکل در روند خرید اینترنتی، بخش پشتیبانی کاربران آماده پاسخگویی به مشکلات و سوالات شما می باشد.

مشخصات نویسندگان مقاله Integration of Artificial Neural Networks and Time serie s technique to Estimate Electrical Energy consumption

   A.Azadeh - Research Institute of Energy Management and Planning and Department of Industrial Engineering, Faculty of Engineering, University of Tehran, Iran
A.Kheirkhah - Department of Industrial Engineering, Faculty of Engineering, Bu- Ali Sina University, Hamadan,Iran
M. Saberi - Department of Industrial Engineering, Faculty of Engineering, Bu- Ali Sina University, Hamadan,Iran

چکیده مقاله:

By looking at the forecasting of Electricity consumption we will explain the application of neural networks to time series analysis. Electricity consumption represents two essential attributes; firstly it shows the strong monthly changes and secondly, clearly shows the increasing
trend. The multilayer perceptron with back propagation is used which is a supervised learning strategy and ideally suited to forecast problems.
Neural network is a strong rival of regression and time series in forecasting. In this paper shown that using neural networks with preprocessed input data would have less error than neural network with raw input data. Also it is shown that neural networks dominate time series approach from point of yielding less mean absolute percentage error( MAPE). The purpose of this model is to find the essential structure of data and eliminate the trend of it with preprocessing techniques to forecast future consumption with less error.

کلیدواژه‌ها:

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-ICEMP01-ICEMP01_058.html
کد COI مقاله: ICEMP01_058

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
A.Azadeh, ; A.Kheirkhah & M. Saberi, ۱۳۸۵, Integration of Artificial Neural Networks and Time serie s technique to Estimate Electrical Energy consumption, اولین کنفرانس بین المللی مدیریت و برنامه ریزی انرژی, تهران, موسسه پژوهش در مدیریت و برنامه ریزی انرژی, دانشکده فنی دانشگاه تهران, https://www.civilica.com/Paper-ICEMP01-ICEMP01_058.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (A.Azadeh, ; A.Kheirkhah & M. Saberi, ۱۳۸۵)
برای بار دوم به بعد: (A.Azadeh; A.Kheirkhah & M. Saberi, ۱۳۸۵)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :

  • Cheng, B. and Titterington, D. M. (1994) Neural networks: a ...
  • White, H. (1989) Some asymptotic results for learning in single ...
  • Schiffmann, W., Joost, M. and Werner, R. (1992) Optimization of ...
  • Geman, S., Bienenstock, E. and Doursat, R. (1992) Neural networks ...
  • . Fiona Nielsen ai :Neural Networks -algoritms and applic ation, ...
  • . G. Peter Zhang, Min Qi, Neural network forecasting for ...
  • . Box, G.E.P., Jenkins, G.M., 1976. Time Series Analysis: Forecasting, ...
  • علم سنجی و رتبه بندی مقاله

    مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
    نوع مرکز:
    تعداد مقالات: ۶۳۸۷۴
    در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

    مدیریت اطلاعات پژوهشی

    اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    مقالات مرتبط جدید

    شبکه تبلیغات علمی کشور

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.