Kinetic modeling of supercritical antisolvent crystallization (Phenanthrene-Toluene-CO2)

سال انتشار: 1390
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 565

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICHEC07_213

تاریخ نمایه سازی: 25 فروردین 1394

چکیده مقاله:

Crystallization is one of the oldest and the most significant unit operations, which is extensively used in chemical industries In addition to conventional methods which have been used to generatesupersaturation, such as cooling and evaporation, antisolvent addition including the introduction ofliquids, dense gases or supercritical fluids, has been an alternative method in this area. In this technique second solvent which is known as antisolvent or precipitant, is added to the solution, causing the reduction of solute solubility in the primary solution, hence resulting in supersaturationgeneration. In this study, the antisolvent crystallization system containing phenanthrene as the solute, toluene as the primary solvent and supercritical CO2 as the antisolvent was considered. At first by theapplication of experimental data in references, an empirical correlation was obtained to calculate thesolubility of phenanthrene in CO2-toluene system, which resulted in a correlation for the phenanthrene solubility and supersaturation rate with pressure (anti-solvent injection). Afterwards, the kinetic modeling of supercritical antisolvent crystallization process using Population Balance Equationmethod was fulfilled. Population balance models which describe the particle kinetics of primary and secondary nucleation as well as growth in supercritical and gas antisolvent crystallization (GAS) processes are rather complicated, and have often integro-partial differential form. In this paper apowerful numerical algorithm which is a combination of the Lax-Wendroff and Crank-Nicholson methods applied to solve the population balance model. The Algorithm simulations were performed by the changes in the main SAS process operating parameters, i.e., the anti-solvent addition rate bychanging the system pressure and supersaturation. The simulations were performed at a process temperature of 40◦C, while the pressure was varied between 0.34-5.63 Mpa. Using supersaturation for the calculation of the nucleation and the crystal growth rates crystal size distribution were determined by the numerical solution to the Population Balance Equation implementing Discretization technique.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. Perrut, Supercritical fluid applications: Industrial developments and economic issues, ...
  • J. Jung, M. Perrut, Particle design using supercritical fluids: Literature ...
  • P. M. C. Gallagher, M. P. Coffey, V. J. Krukonis, ...
  • P. M. Gallagher, V. J. Krukonis, G. D. Botsaris, Gas ...
  • G. Muhrer, C. Lin, M. Mazzotti, Modeling the gas antisolvent ...
  • M. J. A. Hounslow, Discretized population balance for continuous systems ...
  • M. J. Hounslow, R. L. Ryall, V. R. Marshall, A ...
  • H. M. Hulbert, S. Katz, Some problems in particle technology, ...
  • S. Kumar, D. Ramkrisna, On the solution of population balance ...
  • M. K. Bennett, S. Rohani, Solution of population balance equations ...
  • Y. Bakhbakhi, A Discretized Population Balance for Particle Formation from ...
  • A. Randolph, M. _ Larson, Theory of particulate processes, second ...
  • نمایش کامل مراجع