CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

Prediction of steam distillation efficiency during steam injection process by Artificial Neural Network

اعتبار موردنیاز: ۱ | تعداد صفحات: ۹ | تعداد نمایش خلاصه: ۲۷۱ | نظرات: ۰
سال انتشار: ۱۳۹۰
کد COI مقاله: ICHEC07_221
زبان مقاله: انگلیسی
حجم فایل: ۲۹۸.۷۴ کلیوبایت (فایل این مقاله در ۹ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید. در پایگاه سیویلیکا عموما مقالات زیر ۵ صفحه فولتکست محسوب نمی شوند و برای خرید اینترنتی عرضه نمی شوند.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود PDF مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۹ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳۰,۰۰۰ ریال

آدرس ایمیل خود را در زیر وارد نموده و کلید خرید با پرداخت اینترنتی را بزنید. آدرس ایمیل:

رفتن به مرحله بعد:

در صورت بروز هر گونه مشکل در روند خرید اینترنتی، بخش پشتیبانی کاربران آماده پاسخگویی به مشکلات و سوالات شما می باشد.

مشخصات نویسندگان مقاله Prediction of steam distillation efficiency during steam injection process by Artificial Neural Network

  sh Mohammadi - Depatrement of Chemical Engineering, Isfahan University of Technology
  m.r Ehsani - Depatrement of Chemical Engineering, Isfahan University of Technology
m Nikookar - IOR Research Institute, NIOC R&T
l Sahranavard - IOR Research Institute, NIOC R&T

چکیده مقاله:

Steam distillation mechanism is one of the important and effective mechanisms during steam injection process in fractured heavy oil. Due to its important effect in oil recovery, several attempts have been made to simulate this process experimentally and theoretically. Because of limitations in implementing experiments, various models have been studied to predict the distillation effect with minimum entry parameters. So, in this study, a Multi-Layer Perceptron(MLP) neural network is used as an effective method to simulate the distillate recovery, so that the parameters such as API, viscosity, characterization factor and steam distillation factor are the input parameters and distillate yield is the output of the model. After gathering our data from theliterature, 77 data of 128 input data were used for training, 33 data for testing, and 18 data for cross validation. Then, the results of one-layer and two-layer networks with various neurons were compared to the experimental data and other models.

کلیدواژه‌ها:

Heavy Oil, Steam Injection, Distillation, Neural Network, Multi layer perceptron

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
http://www.civilica.com/Paper-ICHEC07-ICHEC07_221.html
کد COI مقاله: ICHEC07_221

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Mohammadi, sh; m.r Ehsani; m Nikookar & l Sahranavard, ۱۳۹۰, Prediction of steam distillation efficiency during steam injection process by Artificial Neural Network, هفتمین کنگره ملی مهندسی شیمی, جزیره کیش, انجمن مهندسی شیمی ایران (IACHE), http://www.civilica.com/Paper-ICHEC07-ICHEC07_221.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Mohammadi, sh; m.r Ehsani; m Nikookar & l Sahranavard, ۱۳۹۰)
برای بار دوم به بعد: (Mohammadi; Ehsani; Nikookar & Sahranavard, ۱۳۹۰)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز:
تعداد مقالات: ۱۸۹۲۴
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مدیریت اطلاعات پژوهشی

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

شبکه تبلیغات علمی کشور

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.