CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

Prediction of Condensate Gas Ratio (CGR) Using an Artificial Neural Network (ANN)

اعتبار موردنیاز: ۱ | تعداد صفحات: ۱۱ | تعداد نمایش خلاصه: ۴۰۶ | نظرات: ۰
سال انتشار: ۱۳۹۰
کد COI مقاله: ICHEC07_574
زبان مقاله: انگلیسی
حجم فایل: ۶۵۵.۹۷ کلیوبایت (فایل این مقاله در ۱۱ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید. در پایگاه سیویلیکا عموما مقالات زیر ۵ صفحه فولتکست محسوب نمی شوند و برای خرید اینترنتی عرضه نمی شوند.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود PDF مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۱۱ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳۰,۰۰۰ ریال

آدرس ایمیل خود را در زیر وارد نموده و کلید خرید با پرداخت اینترنتی را بزنید. آدرس ایمیل:

رفتن به مرحله بعد:

در صورت بروز هر گونه مشکل در روند خرید اینترنتی، بخش پشتیبانی کاربران آماده پاسخگویی به مشکلات و سوالات شما می باشد.

مشخصات نویسندگان مقاله Prediction of Condensate Gas Ratio (CGR) Using an Artificial Neural Network (ANN)

  m Ebadi - Department of petroleum engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
s Gerami - IOR Research Institute, National Iranian Oil Company, Tehran, Iran
  m Vares - Department of petroleum engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

چکیده مقاله:

Added values to project economy from condensate sales and gas deliverability loss due to condensate blockage are the main differences between gas condensate and dry gas reservoirs. Toestimate the added value, one needs to obtain condensate to gas ratio (CGR); however, this needsspecial PVT experimental study and field tests. In the absence of experimental studies during early period of field exploration, techniques which correlate such a parameter would be of interest forengineers. Artificial Neural Network (ANN) is a multi-dimensional correlation including a large number ofparameters, relating input and output data sets. Compared with an empirical correlation, an ANN model can accept more information substantially as input to the model, thereby, improving theaccuracy of the predictions significantly and reducing the ambiguity of the relationship betweeninput and output. Moreover, ANNs are fast-responding systems. Once the model has been trained , predictions on unknown fluids are obtained by direct and rapid calculations, withoutiterative computations or tuning. This paper demonstrates how ANN predicts the CGR of a gas condensate reservoir with minimumand easily accessible parameters. In development stage of the ANN model, a large number of data covering wide range of gas condensate properties and reservoir temperature were collected fromthe literature and National Iranian oil Company (NIOC) data bank. The qualified data set wereused to train the model. The predictive ability of the model was tested using experimental data sets that were not used during the training stage. The results are in good agreement with theexperimentally reported data. The proposed model exhibits sensitivity to several parametersincluding reservoir temperature, gas molecular weight and dew point pressure. The network has the R - square of 0.9881, 0.9837 and 0.9821 for training, validation and test, respectively.

کلیدواژه‌ها:

Petroleum engineering, Reservoir engineering, Condensate gas reservoirs, Condensate gas ratio, CGR, Artificial intelligence, Artificial neural network, ANN

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-ICHEC07-ICHEC07_574.html
کد COI مقاله: ICHEC07_574

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Ebadi, m; s Gerami & m Vares, ۱۳۹۰, Prediction of Condensate Gas Ratio (CGR) Using an Artificial Neural Network (ANN), هفتمین کنگره ملی مهندسی شیمی, جزیره کیش, انجمن مهندسی شیمی ایران (IACHE), https://www.civilica.com/Paper-ICHEC07-ICHEC07_574.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Ebadi, m; s Gerami & m Vares, ۱۳۹۰)
برای بار دوم به بعد: (Ebadi; Gerami & Vares, ۱۳۹۰)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :

  • McCculloch, W.S. and Pitts, W., A Logical Calculus of Ideas ...
  • Abiodun Oladiipo and et al, Artificial Neural Network Modeling of ...
  • Prediction of Condensate Gas Ratio(CGR), Using an Artificial Neural Netw ...
  • Shahab Mohaghegh, Neural Network: What It Can Do for Petroleum ...
  • Curtis H.Whitson, Effect of C, + Properties On Equation - ...
  • Mohaghegh, S. and et al, Petroleum Reservoir Ch aracterization with ...
  • Mohaghegh, Shahab and et al, Design and Development of An ...
  • Hornik, K. and et al, Neural Networks, (1989) 2, 359 ...
  • Hornik, K. and et al, Neural Networks, (1990) 3, 551 ...
  • D. Kaviani and et al, The Application of Artificial Neural ...
  • Ridha B.C. Gharbi, SPE, and Adel M Elsharkawy, SPE, Kuwait ...
  • Meisam Karbalaee Akbari and et al, Dewpoint pressure Estimation of ...
  • William D. McCain Jr., Heavy component Control Reservoir Fluid Behavior. ...
  • S.M. _ Fattah, Neural Network Approach Predicts U.S. Natural Gas ...
  • Shahab Mohaghegh , Virtual- Intelligence Applications in Petroleum Engineering: Part ...
  • علم سنجی و رتبه بندی مقاله

    مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
    در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

    مدیریت اطلاعات پژوهشی

    اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    مقالات مرتبط جدید

    شبکه تبلیغات علمی کشور

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.