CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

Prediction of Critical Temperatures in Steels Heat-treatment Operations with Trained Artificial Neural Network (ANN)

اعتبار موردنیاز: ۱ | تعداد صفحات: ۸ | تعداد نمایش خلاصه: ۱۰۴۴ | نظرات: ۰
سال انتشار: ۱۳۸۶
کد COI مقاله: ICME08_040
زبان مقاله: انگلیسی
حجم فایل: ۲۳۲.۹۶ کلیوبایت (فایل این مقاله در ۸ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید. در پایگاه سیویلیکا عموما مقالات زیر ۵ صفحه فولتکست محسوب نمی شوند و برای خرید اینترنتی عرضه نمی شوند.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود PDF مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۸ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳۰,۰۰۰ ریال

آدرس ایمیل خود را در زیر وارد نموده و کلید خرید با پرداخت اینترنتی را بزنید. آدرس ایمیل:

رفتن به مرحله بعد:

در صورت بروز هر گونه مشکل در روند خرید اینترنتی، بخش پشتیبانی کاربران آماده پاسخگویی به مشکلات و سوالات شما می باشد.

مشخصات نویسندگان مقاله Prediction of Critical Temperatures in Steels Heat-treatment Operations with Trained Artificial Neural Network (ANN)

M Arjomandi - MSC student,materials group, Mechanical Engineering Faculty,K.N,Toosi University of Technology,tehran&SAPCo, material research and engineering Dept
S.H. Sdati - Assistant professor,K.N.Toosi University of Technology,tehran
H Khorsand - Assistant professor,K.N.Toosi University of Technology,tehran
H. Abdoos - MSC student,materials group, Mechanical Engineering Faculty,K.N,Toosi University of Technology,tehran&SAPCo, material research and engineering Dept

چکیده مقاله:

Determination of the temperature at which Austenite is formed is one of the important parameters in the heat treatment process. Chemical composition is an effective factor on these temperatures, particularly in steels that are used in various industries. In this research we have made an attempt to determine these temperatures based on the chemical composition of the steel. Martensite phase and its formation are quite attractive and important in industrial steels for reasons of having good properties such as high strength and high hardness. As such, determining the martensite formation start temperature in steel heat treatment operations is extremely important. Some parameters including chemical composition and grain size are effective factors on this temperature. In this investigation, we have made an attempt to determine this temperature with regard to chemical composition of steels. The technique used for this purpose is feedforward Artificial Neural Network (ANN) with the Back Propagation (BP) learning algorithm. A comparison is made between Ac1, Ac3 temperatures predicted with this model and those from the empirical equation as well as the experimental values obtained from costly and time-consuming tests in scientific and industrial centers for various steels. This comparison indicates that at Ac1, a better agreement exists between the ANN-predicted results and experimental values than the results from the empirical equation and experimental values. At Ac3, the results from the empirical equation are closer to those of the experimental than those predicted from the ANN. This was due to the dispersion of the data set used. A comparison is made between the Ms temperatures predicted with this model and those from the empirical equation as well as the experimental values obtained from costly and time-consuming tests in scientific and industrial centers for various steels. This comparison indicates that a better agreement exists between the ANN-predicted results and experimental values than the results from the empirical equation and experimental values.

کلیدواژه‌ها:

Austenite, martensite, Artificial Neural Network , Heat-treatment,

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
http://www.civilica.com/Paper-ICME08-ICME08_040.html
کد COI مقاله: ICME08_040

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Arjomandi, M; S.H. Sdati; H Khorsand & H. Abdoos, ۱۳۸۶, Prediction of Critical Temperatures in Steels Heat-treatment Operations with Trained Artificial Neural Network (ANN), دومین کنفرانس بین المللی و هشتمین کنفرانس ملی مهندسی ساخت و تولید, تهران, دانشگاه علم و صنعت, http://www.civilica.com/Paper-ICME08-ICME08_040.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Arjomandi, M; S.H. Sdati; H Khorsand & H. Abdoos, ۱۳۸۶)
برای بار دوم به بعد: (Arjomandi; Sdati; Khorsand & Abdoos, ۱۳۸۶)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مدیریت اطلاعات پژوهشی

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

مقالات مرتبط جدید

شبکه تبلیغات علمی کشور

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.