CIVILICA We Respect the Science
ناشر تخصصی کنفرانسهای ایران
عنوان
مقاله

رویکرد طبقه بندی نیمه نظارتی کارآمد برای تصویربرداری ابرطیفی

اعتبار موردنیاز : ۱ | تعداد صفحات: ۱۰ | تعداد نمایش خلاصه: ۴۹ | نظرات: ۰
سال انتشار: ۱۳۹۷
کد COI مقاله: ICSCE02_025
زبان مقاله: فارسی
حجم فایل: ۵۵۰.۳۲ کیلوبایت (فایل این مقاله در ۱۰ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۱۰ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳,۰۰۰ تومان

آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله رویکرد طبقه بندی نیمه نظارتی کارآمد برای تصویربرداری ابرطیفی

  مریم فریور - کارشناسی ارشد مهندسی برق- الکترونیک، سازمان آموزش فنی وحرفه ای کشور
مرتضی احمدی - دانشجوی دکترای مهندسی برق- مخابرات، هیئت علمی موسسه غیرانتفاعی فخرالدین اسعد گرگانی
امید خواجه - کارشناسی ارشد مهندسی برق-الکترونیک، موسسه غیرانتفاعی فخرالدین اسعد گرگانی

چکیده مقاله:

در این مقاله، یک ماشین بردار پشتیبانی نیمه نظارتی کارآمد SVM با الگوریتم کلی مبتنی بر تقسیم بندی برای طبقه بندی تصویر ابرطیفی پیشنهاد شده است. این الگوریتم از اطلاعات فضایی استخراج شده توسط یک الگوریتم تقسیم بندی برای انتخاب نمونه بدون برچسب استفاده می کند. نمونه های بدون برچسب که بیشترین شباهت را به موارد برچسب داردارند، یافت شده و مجموعه کاندید نمونه های بدون برچسب که قرار است انتخاب شوند، به بخش های تصویر متناظر بسط داده می شود. برای تضمین این مطلب که نمونه بدون برچسب نهایی به صورت فضایی توزیع گسترده داشته باشد و همبستگی آن کمتر باشد، انتخاب تصادفی انجام می شود با انعطاف پذیری تعداد نمونه های بدون برچسب که درواقع در یادگیری نیمه نظارتی شرکت دارند. طبقه بندی همچنین از طریق یک تکنیک کلی مشخصه طیفی – فضایی پالایش می شود. روش پیشنهادی با نمونه های آموزش برچسب دار بسیار محدود از طریق آزمایش ها با دو تصویر ابرطیفی ارزیابی می شود که در آن این مورد بر SVM کاملا نظارتی و نسخه نیمه نظارتی بدون دسته کلی طیفی - فضایی برتری دارد.

کلیدواژه‌ها:

لاتین SVM، ابر طیف، نیمه نظارتی، برچسب

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-ICSCE02-ICSCE02_025.html
کد COI مقاله: ICSCE02_025

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
فریور, مریم؛ مرتضی احمدی و امید خواجه، ۱۳۹۷، رویکرد طبقه بندی نیمه نظارتی کارآمد برای تصویربرداری ابرطیفی، دومین کنفرانس بین المللی پژوهش های کاربردی در علوم برق و کامپیوتر، اردبیل، دانشگاه علمی کاربردی پارس آباد 1- موسسه صنعت برق، https://www.civilica.com/Paper-ICSCE02-ICSCE02_025.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (فریور, مریم؛ مرتضی احمدی و امید خواجه، ۱۳۹۷)
برای بار دوم به بعد: (فریور؛ احمدی و خواجه، ۱۳۹۷)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مدیریت اطلاعات پژوهشی

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
  • صنعت اتصال > چسب و رزین
  • اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    مقالات مرتبط جدید

    شبکه تبلیغات علمی کشور

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.