CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

New Clustering Method Using Ant Colony Optimization Algorithm

اعتبار موردنیاز: ۱ | تعداد صفحات: ۸ | تعداد نمایش خلاصه: ۲۲۷۱ | نظرات: ۰
سال انتشار: ۱۳۸۶
کد COI مقاله: IDMC01_012
زبان مقاله: انگلیسی
فایل PDF حاوی متن کامل این مقاله در حال حاضر در سایت موجود نمی‌باشد.

راهنمای دانلود فایل کامل این مقاله

متن کامل این مقاله منتشر نشده و درپایگاه سیویلیکا موجود نمی باشد.

منبع مقالات سیویلیکا دبیرخانه کنفرانسها است. برخی از دبیرخانه ها اقدام به انتشار اصل مقاله نمی نمایند. به منظور تکمیل بانک مقالات موجود، چکیده این مقالات در سایت درج می شوند ولی به دلیل عدم انتشار اصل مقاله، امکان ارائه آن وجود ندارد.

خرید و دانلود PDF مقاله

اصل مقاله (فول تکست) فوق منتشر نشده و یا در سایت موجود نیست و امکان خرید آن فراهم نمی باشد

مشخصات نویسندگان مقاله New Clustering Method Using Ant Colony Optimization Algorithm

  Mohamd Reza Kangavari - Faculty of Computer Engineering Iran University of Science and Technology, Tehran, Iran
  Babak Fakhar - Islamic Azad University of Mahshahr

چکیده مقاله:

Clustering is grouping of patterns according to similarity in some perspectives. Various data representations, similarity measurements and
organization manners, have made several classes of clustering methods that each one can be a strong method in its own field. Some recent
researches show that ant colony optimization algorithms have been successfully applied to combinatorial optimization problems. In this
paper, we present a new data clustering method for data mining in large databases based on Ant Colony Optimization Algorithm. We adopt
simulated annealing concept for ants to decreasingly visit the number of cities to get local optimal solutions. Our simulation results show
that the proposed novel clustering method performs better than the Genetic K-Means Algorithm (GKA). In additional, in all cases we studied, our method produces much smaller errors than the GKA.

کلیدواژه‌ها:

Ant Colony Optimization Algorithm, Clustering, Data mining, k-means, Genetic K-means Algorithm (GKA).

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-IDMC01-IDMC01_012.html
کد COI مقاله: IDMC01_012

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Kangavari, Mohamd Reza & Babak Fakhar, ۱۳۸۶, New Clustering Method Using Ant Colony Optimization Algorithm, اولین کنفرانس داده کاوی ایران, تهران, دانشگاه صنعتی امیرکبیر, موسسه پژوهشی داده پردازان گیتا, https://www.civilica.com/Paper-IDMC01-IDMC01_012.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Kangavari, Mohamd Reza & Babak Fakhar, ۱۳۸۶)
برای بار دوم به بعد: (Kangavari & Fakhar, ۱۳۸۶)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز:
تعداد مقالات: ۲۷۷۱۱
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مدیریت اطلاعات پژوهشی

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

شبکه تبلیغات علمی کشور

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.