CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

استفاده از شبکه های عصبی برای رتبه بندی اعتباری مشتریان

اعتبار موردنیاز: ۱ | تعداد صفحات: ۱۲ | تعداد نمایش خلاصه: ۴۰۴۵ | نظرات: ۰
سال انتشار: ۱۳۸۶
کد COI مقاله: IDMC01_090
زبان مقاله: فارسی
فایل PDF حاوی متن کامل این مقاله در حال حاضر در سایت موجود نمی‌باشد.

راهنمای دانلود فایل کامل این مقاله

متن کامل این مقاله منتشر نشده و درپایگاه سیویلیکا موجود نمی باشد.

منبع مقالات سیویلیکا دبیرخانه کنفرانسها است. برخی از دبیرخانه ها اقدام به انتشار اصل مقاله نمی نمایند. به منظور تکمیل بانک مقالات موجود، چکیده این مقالات در سایت درج می شوند ولی به دلیل عدم انتشار اصل مقاله، امکان ارائه آن وجود ندارد.

خرید و دانلود PDF مقاله

اصل مقاله (فول تکست) فوق منتشر نشده و یا در سایت موجود نیست و امکان خرید آن فراهم نمی باشد

مشخصات نویسندگان مقاله استفاده از شبکه های عصبی برای رتبه بندی اعتباری مشتریان

  محمد البرزی - عضو هیئت علمی دانشگاه صنعت نفت
احمد ودادی - عضو هیئت علمی دانشگاه آزاد اسلامی
محمدعلی دشتی رحمت آبادی - کارشناس ارشد مدیریت مالی

چکیده مقاله:

با توجه به محدودیت منابع ، تخصیص بهینه منابع یک ضرورت به حساب می اید. در تحقیق حاضر به مدل سازی رفتار اعتباری مشتریان با استفاده از شبکه های عصبی جهت تخصیص بهینه منابع و ارتقاء کیفیت خدمات تسهیلات بانک های کشور پرداخته شده است در ادامه، مشتریان تسهیلات اعتباری ساخت مسکن در شهر تهران به سه دسته خوش حساب، سررسید گذشته و بدحساب تقسیم شده، متغیرهای تاثیرگذار بر رفتار اعتباری انهخا شناسایی گردی. سپس داده های تاریخی متناظر ، جمع اوری و به دو مجموعه اموزشی و تست، تقسیم گردید. در مرحله بعد، پس از طراحی مدل های رتبه بندی اعتباری، این مدل ها با داده های آموزشی ، آموزش داده شدند. در نهایت با مجموعه داده های تست، مورد ازمون قرار گرفتند. نتایج بدست امده حاکی از آن است که رفتار اعتباری مشتریان با استفاده از مدل های رتبه بندی شبکه های عصبی قابل پیش بینی است. همچنین مدل آنالیز ممیزی با همان داده های تاریخی اجرا گردید. مقایسه بین قدرت تفکیک مدل های شبکه عصبی و مدل آنالیز ممیزی ، نشان می دهدکه مدل های رتبه بندی اعتباری شبکه های عصبی نسبت به مدل آنالیز ممیزی از قدرت تفکیک یا دقت پیش بینی بیشتری برخوردار هستند.

کلیدواژه‌ها:

شبکه های عصبی ، آنالیز ممیزی ، مدل های رتبه بندی اعتباری

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-IDMC01-IDMC01_090.html
کد COI مقاله: IDMC01_090

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
البرزی, محمد؛ احمد ودادی و محمدعلی دشتی رحمت آبادی، ۱۳۸۶، استفاده از شبکه های عصبی برای رتبه بندی اعتباری مشتریان، اولین کنفرانس داده کاوی ایران، تهران، دانشگاه صنعتی امیرکبیر، موسسه پژوهشی داده پردازان گیتا، https://www.civilica.com/Paper-IDMC01-IDMC01_090.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (البرزی, محمد؛ احمد ودادی و محمدعلی دشتی رحمت آبادی، ۱۳۸۶)
برای بار دوم به بعد: (البرزی؛ ودادی و دشتی رحمت آبادی، ۱۳۸۶)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

کدام مقالات به این منبع استناد نموده اند

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز:
تعداد مقالات: ۲۱۱۳
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مدیریت اطلاعات پژوهشی

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

مقالات مرتبط جدید

شبکه تبلیغات علمی کشور

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.