CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

Modified k-means algorithm for clustering stock market companies

اعتبار موردنیاز: ۱ | تعداد صفحات: ۷ | تعداد نمایش خلاصه: ۳۰۳۱ | نظرات: ۰
سال انتشار: ۱۳۸۶
کد COI مقاله: IDMC01_107
زبان مقاله: انگلیسی
فایل PDF حاوی متن کامل این مقاله در حال حاضر در سایت موجود نمی‌باشد.

راهنمای دانلود فایل کامل این مقاله

متن کامل این مقاله منتشر نشده و درپایگاه سیویلیکا موجود نمی باشد.

منبع مقالات سیویلیکا دبیرخانه کنفرانسها است. برخی از دبیرخانه ها اقدام به انتشار اصل مقاله نمی نمایند. به منظور تکمیل بانک مقالات موجود، چکیده این مقالات در سایت درج می شوند ولی به دلیل عدم انتشار اصل مقاله، امکان ارائه آن وجود ندارد.

خرید و دانلود PDF مقاله

اصل مقاله (فول تکست) فوق منتشر نشده و یا در سایت موجود نیست و امکان خرید آن فراهم نمی باشد

مشخصات نویسندگان مقاله Modified k-means algorithm for clustering stock market companies

  Parviz Rashidi - Iran University of Science and Technology, Computer Engineering Department
   Analoui - Iran University of Science and Technology, Computer Engineering Department
  Javad Azizmi - Iran University of Science and Technology, Computer Engineering Department

چکیده مقاله:

In recent years, there has been a lot of interest in the database community in mining time series data, especially in finance markets. Partitioning assets into natural groups or identifying assets with similar properties are natural problems in finance. In this paper, we proposed a modified k-means clustering algorithm to cluster stock market companies, based on similarity measure between time series. This algorithm utilize maximum information compression (MIC) index as similarity measure for clustering them and its comparison with two other similarity measures, namely correlation coefficient and least-square regression error are made. Appling this algorithm leads to a natural partition of the data, as companies belonging to the same industrial branch are often grouped together. This algorithm is applied to the analysis of the Dow Jones (DJ) index companies, in order to identify similar temporal behavior of the traded stock prices. The identification of clusters of companies of a given stock market index can be exploited in the portfolio optimization strategies.

کلیدواژه‌ها:

clustering, feature similarity, feature selection, stock market index.

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-IDMC01-IDMC01_107.html
کد COI مقاله: IDMC01_107

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Rashidi, Parviz; Analoui & Javad Azizmi, ۱۳۸۶, Modified k-means algorithm for clustering stock market companies, اولین کنفرانس داده کاوی ایران, تهران, دانشگاه صنعتی امیرکبیر, موسسه پژوهشی داده پردازان گیتا, https://www.civilica.com/Paper-IDMC01-IDMC01_107.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Rashidi, Parviz; Analoui & Javad Azizmi, ۱۳۸۶)
برای بار دوم به بعد: (Rashidi; Analoui & Azizmi, ۱۳۸۶)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز:
تعداد مقالات: ۲۷۷۱۱
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مدیریت اطلاعات پژوهشی

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

مقالات مرتبط جدید

شبکه تبلیغات علمی کشور

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.