CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

Data Mining Process Using Clustering: A Survey

اعتبار موردنیاز: ۱ | تعداد صفحات: ۸ | تعداد نمایش خلاصه: ۳۰۵۲ | نظرات: ۰
سال انتشار: ۱۳۸۶
کد COI مقاله: IDMC01_113
زبان مقاله: انگلیسی
فایل PDF حاوی متن کامل این مقاله در حال حاضر در سایت موجود نمی‌باشد.

راهنمای دانلود فایل کامل این مقاله

متن کامل این مقاله منتشر نشده و درپایگاه سیویلیکا موجود نمی باشد.

منبع مقالات سیویلیکا دبیرخانه کنفرانسها است. برخی از دبیرخانه ها اقدام به انتشار اصل مقاله نمی نمایند. به منظور تکمیل بانک مقالات موجود، چکیده این مقالات در سایت درج می شوند ولی به دلیل عدم انتشار اصل مقاله، امکان ارائه آن وجود ندارد.

خرید و دانلود PDF مقاله

اصل مقاله (فول تکست) فوق منتشر نشده و یا در سایت موجود نیست و امکان خرید آن فراهم نمی باشد

مشخصات نویسندگان مقاله Data Mining Process Using Clustering: A Survey

  Mohamad Saraee (شناسه پژوهشگر - Researcher ID: ۲۱۹۶)
Department of Electrical and Computer Engineering Isfahan University of Techno1ogy, Isfahan , 84156-83111
Najmeh Ahmadian - Department of Electrical and Computer Engineering Isfahan University of Techno1ogy, Isfahan , 84156-83111
Zahra Narimani - Department of Electrical and Computer Engineering Isfahan University of Techno1ogy, Isfahan , 84156-83111

چکیده مقاله:

Clustering is a basic and useful method in understanding and exploring a data set. Clustering is division of data into groups of similar objects. Each group, called cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Interest in clustering has increased recently in new areas of applications including data mining, bioinformatics, web mining, text mining, image analysis and so on. This survey focuses on clustering in data mining. The goal of this survey is to provide a review of different clustering algorithms in data mining. A Categorization of clustering algorithms has been provided closely followed by this survey. The basics of Hierarchical Clustering include Linkage Metrics, Hierarchical Clusters of Arbitrary and Binary Divisive Partitioning is discussed at first. Next discussion is Algorithms of the Partitioning Relocation Clustering include Probabilistic Clustering, K-Medoids Methods, K-Means Methods. Density-Based-Partitioning, Grid-Based Methods and Co-Occurrence of Categorical Data are other sections. Their comparisons are mostly based on some specific applications and under certain conditions. So the results may become quite different if the conditions change.

کلیدواژه‌ها:

clustering, partitioning, unsupervised learning, hierarchical clustering

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-IDMC01-IDMC01_113.html
کد COI مقاله: IDMC01_113

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Saraee, Mohamad; Najmeh Ahmadian & Zahra Narimani, ۱۳۸۶, Data Mining Process Using Clustering: A Survey, اولین کنفرانس داده کاوی ایران, تهران, دانشگاه صنعتی امیرکبیر, موسسه پژوهشی داده پردازان گیتا, https://www.civilica.com/Paper-IDMC01-IDMC01_113.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Saraee, Mohamad; Najmeh Ahmadian & Zahra Narimani, ۱۳۸۶)
برای بار دوم به بعد: (Saraee; Ahmadian & Narimani, ۱۳۸۶)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مدیریت اطلاعات پژوهشی

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

مقالات مرتبط جدید

شبکه تبلیغات علمی کشور

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.