CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

Application of Rough Set Theory in Data Mining for Decision Making Processes

اعتبار موردنیاز: ۱ | تعداد صفحات: ۱۲ | تعداد نمایش خلاصه: ۲۳۷۸ | نظرات: ۰
سال انتشار: ۱۳۸۳
کد COI مقاله: IIEC03_016
زبان مقاله: انگلیسی
حجم فایل: ۱ مگابات (فایل این مقاله در ۱۲ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید. در پایگاه سیویلیکا عموما مقالات زیر ۵ صفحه فولتکست محسوب نمی شوند و برای خرید اینترنتی عرضه نمی شوند.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود PDF مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۱۲ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳۰,۰۰۰ ریال

آدرس ایمیل خود را در زیر وارد نموده و کلید خرید با پرداخت اینترنتی را بزنید. آدرس ایمیل:

رفتن به مرحله بعد:

در صورت بروز هر گونه مشکل در روند خرید اینترنتی، بخش پشتیبانی کاربران آماده پاسخگویی به مشکلات و سوالات شما می باشد.

مشخصات نویسندگان مقاله Application of Rough Set Theory in Data Mining for Decision Making Processes

Mohammad Hossein Fazel Zarandi - Department of Industrial Engineering, Amir kabir University of Technology, Tehran, IRAN
Ismail Burhan Turksen - Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ont., Canada
Abolfazl Kazemi - Department of Industrial Engineering, Amir kabir University of Technology, Tehran, IRAN
Ali Babapour Atashgah - Department of Industrial Engineering, Amir kabir University of Technology, Tehran, IRAN

چکیده مقاله:

Decision support systems (DSSs) are prevalent information system tools for decision making in very competitive business environment. In a DSS, decision making process is intimately related to some factors that determine the quality of information systems and their related products. Traditional approaches to data analysis usually cannot be implemented in sophisticated Companies, where managers need some DSS tools for rapid decision making. In traditional approaches to decision making, usually scientific expertise together with statistical techniques have been needed to support the managers. However, these approaches are not able to handle the huge amount of real data, and the processes are usually very slow. Recently, several innovative facilities have been presented for decision-making process in enterprises. Presenting new techniques for development of huge databases, together with some heuristic models have enhanced the capabilities of DSSs to support managers in all levels of organizations. Today, data mining and knowledge discovery is considered as the main module of development of advanced DSSs. In this research, we use rough set theory for data mining for decision-making process in a DSS. The proposed approach concentrates on individual objects rather than population of the objects. Finally, a rule extracted from a data set and the corresponding features (attributes) is considered in modeling data mining.

کلیدواژه‌ها:

Data Mining, Knowledge Discovery, Rough Set Theory, Decision Support Systems, Decision Making

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-IIEC03-IIEC03_016.html
کد COI مقاله: IIEC03_016

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Fazel Zarandi, Mohammad Hossein; Ismail Burhan Turksen; Abolfazl Kazemi & Ali Babapour Atashgah, ۱۳۸۳, Application of Rough Set Theory in Data Mining for Decision Making Processes, سومین کنفرانس ملی مهندسی صنایع, تهران, انجمن مهندسی صنایع ایران, دانشگاه صنعتی امیر کبیر, https://www.civilica.com/Paper-IIEC03-IIEC03_016.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Fazel Zarandi, Mohammad Hossein; Ismail Burhan Turksen; Abolfazl Kazemi & Ali Babapour Atashgah, ۱۳۸۳)
برای بار دوم به بعد: (Fazel Zarandi; Burhan Turksen; Kazemi & Babapour Atashgah, ۱۳۸۳)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :

  • Fayyad, U. & Piatetsky, G.S. (1996). The KDD Process for ...
  • Ganti, V. & Gebrke, J. & Ramakri shnan. R. (1999). ...
  • Han, J. & Lakshmanan, L. (1999). Constraint-B ased Multi dimensional ...
  • Hellerstein, J. & Avnr, R & Chou, A. & Olston. ...
  • Kusiak, A. (2001). Rough Set Theory: A Data Mining Tool ...
  • Munakata, T. & Pawlak, Z. (1996). Rough Control Application of ...
  • Nelson, D.E. (2001). High Range Resolution Radar Target Classification: A ...
  • Pawlak, Z. (2000). AI and Intelligent Industrial Applications: The Rough ...
  • Pawlak, Z (1982). Rough Sets, International Journal of Information and ...
  • Ralph, H, & Barbara, C. (1993). Information Systems Management in ...
  • Ramakri shnan, N. & Grama, A. (1999). Data Mining: firom ...
  • "State of the Art" in Byte Magazine October 1995, Contains ...
  • Thurai singham, B. (1999). Data Mining: Technologies, Techniques, Tools, and ...
  • Wang, X.Z. (1999). Data Mining and Knowledge Discovery for Process ...
  • مدیریت اطلاعات پژوهشی

    اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    مقالات مرتبط جدید

    شبکه تبلیغات علمی کشور

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.