CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

Depth estimation of gravity anomalies using Artificial Neural Networks

اعتبار موردنیاز: ۱ | تعداد صفحات: ۱۴ | تعداد نمایش خلاصه: ۲۶۶۸ | نظرات: ۰
سرفصل ارائه مقاله: اکتشاف معدن
سال انتشار: ۱۳۸۳
نوع ارائه: شفاهی
کد COI مقاله: IMEC01_083
زبان مقاله: انگلیسی
حجم فایل: ۵۶۷.۷۹ کلیوبایت (فایل این مقاله در ۱۴ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید. در پایگاه سیویلیکا عموما مقالات زیر ۵ صفحه فولتکست محسوب نمی شوند و برای خرید اینترنتی عرضه نمی شوند.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود PDF مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۱۴ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳۰,۰۰۰ ریال

آدرس ایمیل خود را در زیر وارد نموده و کلید خرید با پرداخت اینترنتی را بزنید. آدرس ایمیل:

رفتن به مرحله بعد:

در صورت بروز هر گونه مشکل در روند خرید اینترنتی، بخش پشتیبانی کاربران آماده پاسخگویی به مشکلات و سوالات شما می باشد.

مشخصات نویسندگان مقاله Depth estimation of gravity anomalies using Artificial Neural Networks

Alireza Hajian - Student of MSc. in Geophysics Institute of Tehran University
Vahid Ebrahimzadeh Ardestani - DR. of Geophysics in Geophysics Institute of Tehran University
Zahra Ziaee - MSc. of computer ,IT head of Industries and Mines ministry

چکیده مقاله:

The method of Artificial Neural Networks is used as a suitable tool for intelligent interpretation of gravity data in exploration; in this paper, we have designed a Hopfield Neural Network to estimate the gravity source depth. To calculate the weights and biasing values of the network first the network is designed for the models near to sphere or cylinder and these weights are fixed and the network will rotate so that finally get to its stable state . In this state the energy of the network will be in its minimum value. Thus the network will run for some different initial values of depths and the one which will have the least final energy will finally the depth of gravity source. It is very important to test the designed network we fed the noisy data to it and observed its behavior. This Artificial Neural network was used to estimate the depth of a qanat in north entrance of the Geophysics Institute of Tehran University and the result was very near to the real value of depth.

کلیدواژه‌ها:

Artificial neural network, Gravity Exploration, Depth estimation,Hopefield

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-IMEC01-IMEC01_083.html
کد COI مقاله: IMEC01_083

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Hajian, Alireza; Vahid Ebrahimzadeh Ardestani & Zahra Ziaee, ۱۳۸۳, Depth estimation of gravity anomalies using Artificial Neural Networks, کنفرانس مهندسی معدن ایران, تهران, دانشگاه تربیت مدرس, https://www.civilica.com/Paper-IMEC01-IMEC01_083.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Hajian, Alireza; Vahid Ebrahimzadeh Ardestani & Zahra Ziaee, ۱۳۸۳)
برای بار دوم به بعد: (Hajian; Ebrahimzadeh Ardestani & Ziaee, ۱۳۸۳)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :

  • Central Iron Ore Co., 1991, Preliminary exploration of Hamakassi iron ...
  • Barud, J, 1975, Geological Map of the Kerman shahan Quadrangle ...
  • Bellon, H. and Barud, J., 1975, Donnes nouvellexs sur le ...
  • Darvishzadeh, A., 1992, Geology of Iran. Nashre Danesh _ Tehran, ...
  • Amiri, M., 1995, Petrography of the Almouglagh. Unpublished M.Sc Thesis, ...
  • Valizadeah, M.V. and Cantagral, J.M., 1975, Premieres donnees radiometrique (K-Ar ...
  • Berberian, M. and King, G.C.P., 1981, Towards a Palae ogeography ...
  • Einaudi, M.T., and Burt, D.M., 1982, Introduction _ terminology, classification, ...
  • Ramdohr, P., 1980, The ore minerals and their intergrowth, 2nd ...
  • Meinert, L.D.(1 992) Skarns and skarn deposits. Geosc. Can, V ...
  • Zharikov, V .A., 1970, Skarns: Part I., II., and III, ...
  • Guilbert, J.M and Park, Jr.C.F.(1 986)The geology of ore deposits ...
  • مدیریت اطلاعات پژوهشی

    اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    مقالات مرتبط جدید

    شبکه تبلیغات علمی کشور

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.