CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

Porosity estimation improvement by averaging technique from well log in Balal oil field

اعتبار موردنیاز: ۱ | تعداد صفحات: ۱۵ | تعداد نمایش خلاصه: ۲۷۹ | نظرات: ۰
سال انتشار: ۱۳۹۰
نوع ارائه: پوستر
کد COI مقاله: IPEC03_113
زبان مقاله: انگلیسی
حجم فایل: ۴۸۳.۴۳ کلیوبایت (فایل این مقاله در ۱۵ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید. در پایگاه سیویلیکا عموما مقالات زیر ۵ صفحه فولتکست محسوب نمی شوند و برای خرید اینترنتی عرضه نمی شوند.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود PDF مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۱۵ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳۰,۰۰۰ ریال

آدرس ایمیل خود را در زیر وارد نموده و کلید خرید با پرداخت اینترنتی را بزنید. آدرس ایمیل:

رفتن به مرحله بعد:

در صورت بروز هر گونه مشکل در روند خرید اینترنتی، بخش پشتیبانی کاربران آماده پاسخگویی به مشکلات و سوالات شما می باشد.

مشخصات نویسندگان مقاله Porosity estimation improvement by averaging technique from well log in Balal oil field

  Asaad Fegh - M.SC of petroleum engineering, University of Tehran
  Ali Hamidi Habib - M.SC of petroleum engineering, University of Tehran
  Mohammad Ali Riahi - Associated professor, Institute of Geophysics, University of Tehran
  Gholam Hussein Norouzi - Associated professor, University College of engineering, University of Tehran

چکیده مقاله:

Estimation of porosity in hydrocarbon reservoirs is essential for planning production operations. Lateral variations of porosity cannot easily bedelineated from measurements made at sparsely located wells(Soubotcheva, ٢٠٠٦; Hampson and others, ٢٠٠١; Soto, ١٩٩٨). So, the integration of ٣D seismic data with petrophysical measurements cansignificantly improves the spatial distribution of porosity. Despite sparse well data, ٣D seismic data provide a dense and regular areal sampling ofthe acoustic properties of the producing reservoirs. After processing of ٣D data, the lateral variations of seismic amplitudes can be transformed into impedances by integrating it from the well and geological data, which in turn are indirectly related to porosity (Pramanik and others, ٢٠٠٤; Todorov, ٢٠٠٠; Angelier and Carpi, ١٩٨٢; de Buyl and others, ١٩٨٦).Artificial neural networks (ANNs) are very suitable technique in softcomputing for signal processing. According to a set of multivariate input and target measurements, ANNs can learn and extract their complex nonlinearrelationships. The relationships can be applied to estimate the target variables when the actual measurements are not available (Wong and others, ٢٠٠٢; Ronen and others, ١٩٩٤). Previous studies by this method have shown good results in field applications, compared to the wellestablishedmethods such as multiple linear regression and discriminant analysis. So, this method has been used in the paper (Al-Bulushi andothers, ٢٠١٠; Wong and others, ٢٠٠٧; Wong and others, ٢٠٠٢). Because frequencies of well logs and attributes aren’t identical, onlysamples of attributes that is correlated temporally with samples of target log are inserted to calculations. Multivariate regression method had beendeveloped by Hampson to solve this problem that convolution filters are used instead of single points (Hampson and others, ٢٠٠٠; Russell andothers, ١٩٩٧; Russell, B. H., ٢٠٠٤). This method is equivalent with creating a set of new attributes that in comparison with main attributes had beenshifted temporally. This time shifts are coincident with convolution filters. But many samples, on the different attributes, aren’t inserted intoestimation process because of frequencies distinction and in fact these samples don’t have any role in estimation. It can be inserted average oflogs instead of porosity logs because of the studied horizon has homogeneity petrophysically and in reservoir properties and there is littlechanges in porosity. So with averaging from logs and attributes in the horizon, both the problem of distinct frequencies is solved and lower errorare obtained. So, main goal of this paper is studying of results obtained from porosity estimation by using artificial neural network before and after averaging from logs and seismic attributes in studied reservoir horizon. To achieve the defined goal, one of the southern Iranian oil fields is selected.

کلیدواژه‌ها:

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-IPEC03-IPEC03_113.html
کد COI مقاله: IPEC03_113

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Fegh, Asaad; Ali Hamidi Habib; Mohammad Ali Riahi & Gholam Hussein Norouzi, ۱۳۹۰, Porosity estimation improvement by averaging technique from well log in Balal oil field, سومین کنگره ملی مهندسی نفت, تهران, انستیتو مهندسی صنعت نفت, https://www.civilica.com/Paper-IPEC03-IPEC03_113.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Fegh, Asaad; Ali Hamidi Habib; Mohammad Ali Riahi & Gholam Hussein Norouzi, ۱۳۹۰)
برای بار دوم به بعد: (Fegh; Hamidi Habib; Riahi & Norouzi, ۱۳۹۰)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :

  • Al Bulushi, N. I., King, P. R., Blunt, M. J., ...
  • Al Dabbas, M., Jassim, _ and Qaradaghi, A., 2010, Sedi ...
  • Angelier, G. P., and Carpi, R., 1982, Porosity prediction from ...
  • Broomhead, D. S., and Lowe, D., 1988, Multivariable functional inter- ...
  • De Buyl, M., Guidish, T., and Bell, F., ۱۹۸۶, Statistical ...
  • Hagan, M. T., Demuth, H. B., and Beale, M., 1996, ...
  • Hampson, D., and Russell, B. H., 2007, Emerge module, Theory ...
  • Fausett, L., 1994, Fu n damentals of Neural Networks: Architectu ...
  • A., 2001, Use of multiatribute .ل Hampson, D., Schuelk, _ ...
  • Hampson, D., Todorov, T., and Russell, B., 2000. _ using ...
  • T., and Mizutani, E., 1997, Neuro-fuzzy and soft ...
  • Mohaghegh, D. S., Toro, J, Wilson, T. H., Artun, E., ...
  • Characterizat _ : Final Report Prepared for U.S. Department of ...
  • multiattribute transforms: A case study, Geophysics, V. 69, p. 352-372. ...
  • Russell, B. H., 2004, the application of multivariate statistics and ...
  • Russell, B.H., Lines, L.R., and Hampson, D. P., 2003, Application ...
  • Attributes and Well Log Data using Artificial Intelligence, thesis: King ...
  • Sundararajan _ N., Saratchand ran _ P., and Ying, W. ...
  • Todorov, I. T., 2000. _ Integration of 3C-3D seismic data ...
  • Tutmez, B., 2010 _ Assessment of porosity using spatial correlation ...
  • Wong, P. M., Aminzadeh, F., and Nikravesh, M., ۲۰۰۲, soft ...
  • Wong, P. M., Jian, F. X., Taggart, I. J., 2007, ...
  • علم سنجی و رتبه بندی مقاله

    مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
    نوع مرکز:
    تعداد مقالات: ۵۹۸۷۹
    در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

    مدیریت اطلاعات پژوهشی

    اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    مقالات پیشنهادی مرتبط

    مقالات مرتبط جدید

    شبکه تبلیغات علمی کشور

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.