CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

Developing a Model Based on a Hybrid Neural Particle Swarm Optimization for Prediction of Dew Point Pressure

اعتبار موردنیاز: ۱ | تعداد صفحات: ۱۹ | تعداد نمایش خلاصه: ۳۶۶ | نظرات: ۰
سال انتشار: ۱۳۹۰
نوع ارائه: پوستر
کد COI مقاله: IPEC03_136
زبان مقاله: انگلیسی
حجم فایل: ۵۶۰.۷۳ کلیوبایت (فایل این مقاله در ۱۹ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید. در پایگاه سیویلیکا عموما مقالات زیر ۵ صفحه فولتکست محسوب نمی شوند و برای خرید اینترنتی عرضه نمی شوند.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود PDF مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۱۹ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳۰,۰۰۰ ریال

آدرس ایمیل خود را در زیر وارد نموده و کلید خرید با پرداخت اینترنتی را بزنید. آدرس ایمیل:

رفتن به مرحله بعد:

در صورت بروز هر گونه مشکل در روند خرید اینترنتی، بخش پشتیبانی کاربران آماده پاسخگویی به مشکلات و سوالات شما می باشد.

مشخصات نویسندگان مقاله Developing a Model Based on a Hybrid Neural Particle Swarm Optimization for Prediction of Dew Point Pressure

چکیده مقاله:

Dew point pressure is one of the most important parameters to characterize gas condensate reservoirs. Experimental determination of dew point pressure (DDP) in a window PVT cell is often difficultespecially in case of lean retrograde gas condensate. Therefore, searching for fast and robust algorithms for determination of DPP isusually needed. Despite of the wide range of applications and flexibility of ANNs in petroleum industries, design and structural optimization ofneural networks is still strongly dependent upon the designer's experience. To mitigate this problem, this paper presents a newapproach based on a hybrid neural particle swarm optimization to determine the DPP. Then, equations for DPP prediction by using theoptimized weights of network have been generated. With the obtained correlation, the user may use such results without a running the ANNsoftware. Consequently, this new model is compared with results obtained using other conventional models to make evaluation among different techniques. The results show that the hybrid model can be applied effectively and afford high accuracy and dependability for DPP forecasting for the wide range of gas properties and reservoir temperatures.

کلیدواژه‌ها:

Gas condensate reservoir; Dew point pressure; Artificial neural network; Particle swarm optimization.

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-IPEC03-IPEC03_136.html
کد COI مقاله: IPEC03_136

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Kaydani, Hossein; Ali Hajizadeh & Ali Mohebbi, ۱۳۹۰, Developing a Model Based on a Hybrid Neural Particle Swarm Optimization for Prediction of Dew Point Pressure, سومین کنگره ملی مهندسی نفت, تهران, انستیتو مهندسی صنعت نفت, https://www.civilica.com/Paper-IPEC03-IPEC03_136.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Kaydani, Hossein; Ali Hajizadeh & Ali Mohebbi, ۱۳۹۰)
برای بار دوم به بعد: (Kaydani; Hajizadeh & Mohebbi, ۱۳۹۰)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :

  • Gharbi, R., 1997. Estimating the isothermal com pressibility coefficient of ...
  • Guo, T.M. and Du, L, 1989. A new th ree-pa ...
  • Humoud, A.A. and Al-Marhoun, M.A., 2001. A new correlation for ...
  • Kasabov, N.K., 1998. Foundation of neural networks, fuzzy systems and ...
  • SWarm optimization. , vol. ...
  • approach for reservoir heterogeneity cha racterization using artificial neural networks. ...
  • Nasrifar, Kh. and Moshfeghian, M., 2002. Vapor-iquid equilibria of LNG ...
  • Nementh, L.K. and Kennedy, H.T., 1967, A correlation of Dew ...
  • Phase Behavior of Oil and Gas from Paloma Field, AlME ...
  • Mohaghegh, S., Ameri, S. and Aminian, K., 1996. A methodolog ...
  • Saemi, M., Ahmadi, M., Yazdian, A., 2007. Design of neural ...
  • Yisheng, F., Baozhu, L. and Yongle, H., 1998, Condensate Gas ...
  • Wei, H.L., Billings, S.A., 2008. General ized cellular neural networks ...
  • Zhang, J.R., Zhang, J., Lok, T.M., Lyu, M., 20 07. ...
  • Zhang, M. and Mei, H., 1998. A K-Value Com positional ...
  • from a Louisiana field, AIME 189, pp. 261-268. ...
  • Saker, R., Danesh, A.S. and Todd A.C., 1991. Phase Behavior ...
  • -1.213 -2.281 -0.990 -0.916 1.362 ...
  • Table 3 : Accuracy of the various methods for predlicting ...
  • Yisheng et al. (1998) 24.81 27.45 ...
  • 882 -0.408 -0.025 1.105 0.646 ...
  • Nemeth and Kennedy (1967) 19.26 28.55 0.317 0.10 ...
  • مدیریت اطلاعات پژوهشی

    اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    مقالات مرتبط جدید

    شبکه تبلیغات علمی کشور

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.