CIVILICA We Respect the Science
ناشر تخصصی کنفرانسهای ایران
عنوان
مقاله

Identifying Categories of Zones in Scientific Papers based on Lexical and Syntactical Features

اعتبار موردنیاز PDF: ۱ WORD: ۳ | تعداد صفحات: ۷ | تعداد نمایش خلاصه: ۳۷۲ | نظرات: ۰
سال انتشار: ۱۳۹۵
نوع ارائه: شفاهی
کد COI مقاله: IRANWEB02_047
زبان مقاله: انگلیسی
حجم فایل: ۲۰۸.۴۵ کیلوبایت (فایل این مقاله در ۷ صفحه با فرمت PDF قابل دریافت می باشد)
محتوای کامل این مقاله با فرمت WORD هم قابل دریافت می باشد.

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود فایل PDF یا WORD مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۷ صفحه است به صورت فایل PDF و یا WORD در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله Identifying Categories of Zones in Scientific Papers based on Lexical and Syntactical Features

  Nasrin Asadi - Knowledge Management & E-Organization Group, IT Research Faculty, ICT Research Institute Tehran, Iran
    Kambiz Badie - Knowledge Management & E-Organization Group, IT Research Faculty, ICT Research Institute Tehran, Iran

چکیده مقاله:

Scientific papers are continually increasing on the web and it is mandatory for the researchers to grasp on some powerful tools which are helpful in an efficient process of large amounts of data. Zone identification is a Natural Language Processing application which is to classify the sentences of scientific papers into a fixed set of zone categories.In this paper, we will propose an algorithm to identify some categories of zones in scientific papers. Regarding this, we make use of some significant lexical and syntactical features of the sentences standing for these categories in a particular way. In this respect, a sequence of sentences has been used. Experimental results show that these features are capable enough to identify the desired categories in a reasonable manner.

کلیدواژه‌ها:

Scientific paper, Zone category, Zone Identification, Sentence Classification, Support Vector Machines, Lexical Features, Syntactical Features

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-IRANWEB02-IRANWEB02_047.html
کد COI مقاله: IRANWEB02_047

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Asadi, Nasrin & Kambiz Badie, ۱۳۹۵, Identifying Categories of Zones in Scientific Papers based on Lexical and Syntactical Features, دومین کنفرانس بین المللی وب پژوهی, تهران, دانشگاه علم و فرهنگ, https://www.civilica.com/Paper-IRANWEB02-IRANWEB02_047.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Asadi, Nasrin & Kambiz Badie, ۱۳۹۵)
برای بار دوم به بعد: (Asadi & Badie, ۱۳۹۵)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز: پژوهشگاه دولتی
تعداد مقالات: ۵۳۶
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مدیریت اطلاعات پژوهشی

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

مقالات مرتبط جدید

شبکه تبلیغات علمی کشور

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.