CIVILICA We Respect the Science
ناشر تخصصی کنفرانسهای ایران
عنوان
مقاله

استخراج ویژگی ها و کاهش ابعاد در الگوریتم های یادگیری ماشین به روش تصویر افکنی تصادفی (RP)

اعتبار موردنیاز : ۱ | تعداد صفحات: ۶ | تعداد نمایش خلاصه: ۱۵۶۳ | نظرات: ۰
سال انتشار: ۱۳۹۲
کد COI مقاله: ISCEE16_148
زبان مقاله: فارسی
حجم فایل: ۱۷۰.۱۴ کیلوبایت (فایل این مقاله در ۶ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۶ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳,۰۰۰ تومان

آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله استخراج ویژگی ها و کاهش ابعاد در الگوریتم های یادگیری ماشین به روش تصویر افکنی تصادفی (RP)

  حجت حاجی آبادی - کارشناس ارشد برق-کنترل دانشگاه فردوسی مشهد
  محمد باقر نقیبی سیستانی - استادیار گروه برق دانشگاه فردوسی مشهد

چکیده مقاله:

همواره کار کردن با بانکهای اطلاعاتی حجیم، مشکلات خاص و عدیده ای را بهمراه دارد. لذا با بهره گرفتن از روشهای کاهش ابعاد به دنبال تقلیل ابعاد بانک اطلاعاتی هستیم. در این مقاله ابتدا به بیان مقدمه ای در مورد روشهای کاهش ابعاد پرداخته شده، سپس روش PCA که یکی از معروف ترین روشهای استخراج ویژگی هاست مورد بررسی قرار گرفته است. پس از آن روش تصویر افکنی تصادفی (RP)، یکی دیگر از این روشها، معرفی شده و به بررسی مقایسه این دو روش پرداخته شده است. برای انجام مقایسه از دو بانک اطلاعاتی معتبر و الگوریتم یادگیری ماشین NN ستفاده شده است. معیارهایی که برای مقایسه مد نظر بوده است، عبارتند از: پیچیدگی و حجم محاسبات، زمان انجام محاسبات و دقت روش. در پایان با تحلیل نمودارهای به دست آمده توسط نرم افزار MATLAB نتیجه زیر حاصل شده است: در برخی موارد دقت روش RP نه تنها با دقت PCA برابری کرده، بلکه بیشتر از آن نیز می تواند باشد. از طرفی پیچیدگی کمتر RP، -علی الخصوص در مواردی که با حجم زیاد داده مواجه باشیم – آن را به روشی مفیدتر و کاربردی تر از PCA تبدیل خواهد کرد.

کلیدواژه‌ها:

استخراج ویژگی ها به روش PCA، الگوریتم یادگیری ماشین NN، تصویر افکنی تصادفی (RP)، کاهش ابعاد

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-ISCEE16-ISCEE16_148.html
کد COI مقاله: ISCEE16_148

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
حاجی آبادی, حجت و محمد باقر نقیبی سیستانی، ۱۳۹۲، استخراج ویژگی ها و کاهش ابعاد در الگوریتم های یادگیری ماشین به روش تصویر افکنی تصادفی (RP)، شانزدهمین کنفرانس دانشجویی مهندسی برق ایران، کاشان، سازمان علمی دانشجویی مهندسی برق کشور، https://www.civilica.com/Paper-ISCEE16-ISCEE16_148.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (حاجی آبادی, حجت و محمد باقر نقیبی سیستانی، ۱۳۹۲)
برای بار دوم به بعد: (حاجی آبادی و نقیبی سیستانی، ۱۳۹۲)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :

  • J. G. Dy, C. E. Brodley, A. Kak, C. Shyu, ...
  • _ of Data, pp. 94-105, 1998. ...
  • S. Borderick, "The customized- queries approach to CBIR using EM", ...
  • K. _ _ recognition, 2" Eudion, Academic Press, 1990. ...
  • E. Alpaydin, Introduction to Machine Learning, _ Eddition, The MIT ...
  • H. Ritter and T Kohonen, _ Self-organizing semantic maps", Biological ...
  • W. B. Johnson and J. Lindenstrauss, "Extensions of Lipshitz mapping ...
  • G. H. Golub and C. F. Van Loan, Matrix Computations, ...
  • علم سنجی و رتبه بندی مقاله

    مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
    نوع مرکز: دانشگاه دولتی
    تعداد مقالات: ۲۴۴۳۴
    در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

    مدیریت اطلاعات پژوهشی

    اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    مقالات پیشنهادی مرتبط

    مقالات مرتبط جدید

    شبکه تبلیغات علمی کشور

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.