CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

Fault Detectio fo Simulated Servo Hydraulic System By Utilizing Artificial Neural Network (ANN)

اعتبار موردنیاز: ۱ | تعداد صفحات: ۹ | تعداد نمایش خلاصه: ۱۴۷۰ | نظرات: ۰
سرفصل ارائه مقاله: Manufacturing
سال انتشار: ۱۳۸۴
کد COI مقاله: ISME13_681
زبان مقاله: انگلیسی
حجم فایل: ۱۸۴.۰۶ کلیوبایت (فایل این مقاله در ۹ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید. در پایگاه سیویلیکا عموما مقالات زیر ۵ صفحه فولتکست محسوب نمی شوند و برای خرید اینترنتی عرضه نمی شوند.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود PDF مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۹ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳۰,۰۰۰ ریال

آدرس ایمیل خود را در زیر وارد نموده و کلید خرید با پرداخت اینترنتی را بزنید. آدرس ایمیل:

رفتن به مرحله بعد:

در صورت بروز هر گونه مشکل در روند خرید اینترنتی، بخش پشتیبانی کاربران آماده پاسخگویی به مشکلات و سوالات شما می باشد.

مشخصات نویسندگان مقاله Fault Detectio fo Simulated Servo Hydraulic System By Utilizing Artificial Neural Network (ANN)

   Riahi - Iran University of Science and Technology Narmak, Tehran, Iran
   Gholizadeh - Iran University of Science and Technology Narmak, Tehran, Iran

چکیده مقاله:

Maintenance reliability and efficiency in industrial hydraulic systems operation has become a point of concern for the professionals in maintenance engineering. One practical approach in this regard is the realization of symptoms of early stage malfunctioning in fluid power systems after which maintenance planning and preventive means would follow upon a reasonably accurate and subsequently acceptable determination. Among the highly reliable sources providing such convenience, Artificial Neural Network (ANN) stands a high chance of success.
Neural network method has been used to detect faults occurring in most hydraulic systems. These faults could be related to supply pressure, effective bulk modulus and total leakage. The simulated system in this study consists of hydraulic servo valve, double acting cylinder and a spring that resists piston movement. Two main reasons causing this system to have a nonlinear behavior are hydraulic servo valve and compressibility effect of hydraulic fluid. The neural network approach in this investigation comprises of an efficient use in nonlinear systems and requires advance knowledge about the system behavior under faulty conditions and assumptions about the type and severity of faults likely to occur. Neural networks trained with different training algorithms are investigated. After training the network, the system was examined for different inputs and obtained results were compared.

کلیدواژه‌ها:

Fault Detection; ANN (Artificial Neural Network); Hydraulic Servo Valve

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-ISME13-ISME13_681.html
کد COI مقاله: ISME13_681

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Riahi, & Gholizadeh, ۱۳۸۴, Fault Detectio fo Simulated Servo Hydraulic System By Utilizing Artificial Neural Network (ANN), سیزدهمین کنفرانس سالانه مهندسی مکانیک, اصفهان, دانشگاه صنعتی اصفهان, https://www.civilica.com/Paper-ISME13-ISME13_681.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Riahi, & Gholizadeh, ۱۳۸۴)
برای بار دوم به بعد: (Riahi & Gholizadeh, ۱۳۸۴)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :

  • Bernieri, A., Apuzzo, M, Swanson, L, and Savastano, M, ، ...
  • Me aSurement, Vol. 43, No. 6, December 1994. ...
  • Rui, Liu, ،Nonlinear Control of Electro- hydraulic Servo systens: Theory ...
  • Practice, ' MSc Thesis, Tsinghua University, 1993. ...
  • Merritt, H. E., *Hydraulic Control Systems, ' Wiley, New York, ...
  • Grodfrey, K. R.، Perturbation Signals for System Identification, _ Prentice ...
  • Moller, M. F., ،A Scaled Conjugate Gradient ...
  • علم سنجی و رتبه بندی مقاله

    مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
    نوع مرکز:
    تعداد مقالات: ۲۷۷۵۱
    در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

    مدیریت اطلاعات پژوهشی

    اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    مقالات مرتبط جدید

    شبکه تبلیغات علمی کشور

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.