CIVILICA We Respect the Science
ناشر تخصصی کنفرانسهای ایران
عنوان
مقاله

Optimization in deep drawing process

اعتبار موردنیاز : ۱ | تعداد صفحات: ۵ | تعداد نمایش خلاصه: ۱۵۲۵ | نظرات: ۰
سرفصل ارائه مقاله: Computational Mechanics - Simulation and Optimization
سال انتشار: ۱۳۸۷
کد COI مقاله: ISME16_821
زبان مقاله: انگلیسی
حجم فایل: ۴۰۳.۸۶ کیلوبایت (فایل این مقاله در ۵ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۵ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳,۰۰۰ تومان

آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله Optimization in deep drawing process

   Kashtiban - MSC.Student Amirkabir university of technology Tehran,Iran
   Arezo - Associate Professor Amirkabir university of technology Tehran,Iran
   Ghaffari Tari - MSC.Student Amirkabir university of technology Tehran,Iran

چکیده مقاله:

This paper presents an optimization method applied to deep drawing in sheet metal processes. The method couples the artificial neural network, with an evolutionary genetic algorithm searching the optimal process parameters. Finite element analyses are conducted for combination of process parameters designed, using statistical full factorial experimental design to find wall thickness as an objective function. Applications are presented to demonstrate the applicability of the proposed method considering several relevant parameters including punch and die radii, blankholder force and friction in all contact surfaces.

کلیدواژه‌ها:

sheet metal forming, full factorial, Finite element method, Artificial neural network, Optimization, Genetic algorithm

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-ISME16-ISME16_821.html
کد COI مقاله: ISME16_821

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Kashtiban, ; Arezo & Ghaffari Tari, ۱۳۸۷, Optimization in deep drawing process, شانزدهمین کنفرانس سالانه مهندسی مکانیک, کرمان, دانشکده فنی مهندسی دانشگاه شهید باهنر, https://www.civilica.com/Paper-ISME16-ISME16_821.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Kashtiban, ; Arezo & Ghaffari Tari, ۱۳۸۷)
برای بار دوم به بعد: (Kashtiban; Arezo & Ghaffari Tari, ۱۳۸۷)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز: دانشگاه دولتی
تعداد مقالات: ۱۹۲۲۳
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مدیریت اطلاعات پژوهشی

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

مقالات مرتبط جدید

شبکه تبلیغات علمی کشور

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.