CIVILICA We Respect the Science
ناشر تخصصی کنفرانسهای ایران
عنوان
مقاله

طبقه بندی داده ها توسط الگوریتم های ماشین بردار پشتیبان و ازدحام ذرات در شرایط گم شدن داده ها

اعتبار موردنیاز : ۱ | تعداد صفحات: ۱۶ | تعداد نمایش خلاصه: ۱۲ | نظرات: ۰
سال انتشار: ۱۳۹۸
کد COI مقاله: ITCT06_058
زبان مقاله: فارسی
حجم فایل: ۹۱۰.۱۵ کیلوبایت (فایل این مقاله در ۱۶ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۱۶ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳,۰۰۰ تومان

آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله طبقه بندی داده ها توسط الگوریتم های ماشین بردار پشتیبان و ازدحام ذرات در شرایط گم شدن داده ها

  سارا نخعی - کارشناس ارشدمهندسی کامپیوتر،دانشکده کامپیوتر،دانشگاه غیرانتفاعی بهمنیار کرمان

چکیده مقاله:

گمشده گی داده در تمامی پژوهش های علوم اجتماعی، رفتاری، پزشکی وجود دارد. در آمار ،گمشدن داده به وضعیتی گفته میشود که تعدادی از اطلاعات داده ها گزارش نشده باشند. گمشده گی داده باعث کاهش تطابق جامعه نمونه با جامعه کل شده و میتواند منجر به نتیجه گیری اشتباه در مورد جمعیت اصلی شود. گمشده گی داده یک اتفاق معمول بوده و بسته به میزان آن، می تواند اثر قابل توجهی در نتیجه گیری به دست آمده از داده ها داشته باشد. تمامی روشهای برآورد پارامترها بر پایه فرض کامل بودن مجموعه داده ها استوار است و تحت برقراری این شرایط منجر به برآوردهایی نااریب می شوند؛ و البته با افزایش نسبت گمشدگی، مقدار اریبی نیز افزایش خواهد یافت.در این پژوهش بدین صورت عمل گردیده است که یک سری مجموعه داده واقعی بر حسب درصد گمشده گی مقادیری را از دست می دهند سپس بر اساس الگوریتم ازدحام ذرات مقادیر گمشده تخمین زده می شوند وبر اساس معیارمیانگین خطای مطلق میزان درصد خطای بدست آمده از روش ازدحام ذرات نسبت به مقادیر واقعی محاسبه می شود که این معیار بر اساس نتایج ارزیابی ، خطای کمتری را نشان میدهد و هر چه داده ها بیشتر باشند این معیار نیز به تناسب بیشتر می شود.سپس با استفاده از الگوریتم طبقه بندی svm برای طبقه بندی داده ها بر اساس مقادیر تعیین شده توسط الگوریتم ازدحام ذرات دقت حاصل با دقت طبقه بندی بر روی داده های حاصل ازپر کردن با میانگین ویژگی وهمچنین پرکردن داده ها با الگوریتم نزدیکترین همسایگی (K-NN) مقایسه میگردد.که در بخش ارزیابی نتایج نشان داده می شود که دقت طبقه بندی بر روی داده های بدست آمده از روش ازدحام ذرات نسبت به روشهای دیگر بالاتر است و هرچه درصد گمشدگی بیشتر شود این دقت کمتر می شود.

کلیدواژه‌ها:

داده های گمشده، ازدحام ذرات،داده کاوی، الگوریتم طبقه بندی svm ،دقت طبقه بندی

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-ITCT06-ITCT06_058.html
کد COI مقاله: ITCT06_058

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
نخعی, سارا، ۱۳۹۸، طبقه بندی داده ها توسط الگوریتم های ماشین بردار پشتیبان و ازدحام ذرات در شرایط گم شدن داده ها، ششمین کنفرانس بین المللی فناوری اطلاعات، کامپیوتر و مخابرات، گرجستان، دانشگاه پیام نور مرکز بین الملل گرجستان، https://www.civilica.com/Paper-ITCT06-ITCT06_058.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (نخعی, سارا، ۱۳۹۸)
برای بار دوم به بعد: (نخعی، ۱۳۹۸)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز: موسسه غیرانتفاعی
تعداد مقالات: ۱۱۴
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مدیریت اطلاعات پژوهشی

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

مقالات پیشنهادی مرتبط

مقالات مرتبط جدید

شبکه تبلیغات علمی کشور

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.