CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

Improved Black Hole Algorithm for Efficient Low ObservableUCAV Path Planning in Constrained Aerospace

اعتبار موردنیاز PDF: ۱ | تعداد صفحات: ۶ | تعداد نمایش خلاصه: ۲۱۴ | نظرات: ۰
سال انتشار: ۱۳۹۳
کد COI مقاله: JR_ACSIJ-3-3_012
زبان مقاله: انگلیسی
حجم فایل: ۳۱۵.۳۳ کیلوبایت (فایل این مقاله در ۶ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

متن کامل این مقاله دارای ۶ صفحه در فرمت PDF قابل خریداری است. شما می توانید از طریق بخش روبرو فایل PDF این مقاله را با پرداخت اینترنتی ۳,۰۰۰ تومان بلافاصله دریافت فرمایید
قبل از اقدام به دریافت یا خرید مقاله، حتما به فرمت مقاله و تعداد صفحات مقاله دقت کامل را مبذول فرمایید.
علاوه بر خرید تک مقاله، می توانید با عضویت در سیویلیکا مقالات را به صورت اعتباری دریافت و ۲۰ تا ۳۰ درصد کمتر برای دریافت مقالات بپردازید. اعضای سیویلیکا می توانند صفحات تخصصی شخصی روی این مجموعه ایجاد نمایند.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود فایل PDF مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۶ صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله Improved Black Hole Algorithm for Efficient Low ObservableUCAV Path Planning in Constrained Aerospace

  A. A. Heidari - Department of Surveying and Geomatics Engineering, College of Engineering, University of Tehran Tehran, Iran
  R. A. Abbaspour - Department of Surveying and Geomatics Engineering, College of Engineering, University of Tehran Tehran, Iran

چکیده مقاله:

An essential task of UAV autonomy is automatic path planning. There are many evolutionary planners for Unmanned AerialVehicles (UAVs) that have been developed UAV community. In this paper a comparative study about performance of effective trajectory planners is done. Also an efficient version of black hole methodology has been introduced for single UCAV trajectory planning, and an enhancement is designed to communicate among stars and black hole based on relativity theory principles. By considering UCAV Dynamic properties and environment constraints, Developed path planner based onblack hole algorithm can compute feasible and quasi-optimal trajectories for UCAV flight. Our comparison of algorithms shows that IBH generates desired optimal trajectories. Then path planning task of UCAV is performed. Simulations show advantage of IBH methodology.

کلیدواژه‌ها:

Unmanned combat aerial vehicle (UCAV), Flight Simulation, Trajectory Planning, black hole algorithm

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-JR_ACSIJ-JR_ACSIJ-3-3_012.html
کد COI مقاله: JR_ACSIJ-3-3_012

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Heidari, A. A. & R. A. Abbaspour, ۱۳۹۳, Improved Black Hole Algorithm for Efficient Low ObservableUCAV Path Planning in Constrained Aerospace, Advances in Computer Science : an International Journal 3 (3), https://www.civilica.com/Paper-JR_ACSIJ-JR_ACSIJ-3-3_012.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Heidari, A. A. & R. A. Abbaspour, ۱۳۹۳)
برای بار دوم به بعد: (Heidari & Abbaspour, ۱۳۹۳)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز: دانشگاه دولتی
تعداد مقالات: ۴۹۴۷۳
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مدیریت اطلاعات پژوهشی

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

شبکه تبلیغات علمی کشور

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.