CIVILICA We Respect the Science
ناشر تخصصی کنفرانسهای ایران
عنوان
مقاله

Mining Interesting Aspects of a Product using Aspect-based Opinion Mining from Product Reviews

اعتبار موردنیاز : ۱ | تعداد صفحات: ۷ | تعداد نمایش خلاصه: ۴۷ | نظرات: ۰
سال انتشار: ۱۳۹۶
کد COI مقاله: JR_IJE-30-11_011
زبان مقاله: انگلیسی
حجم فایل: ۸۶۸.۷۳ کیلوبایت (فایل این مقاله در ۷ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۷ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳,۰۰۰ تومان

آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله Mining Interesting Aspects of a Product using Aspect-based Opinion Mining from Product Reviews

K Srividya - Department of CSE, Gmrit ,Rajam, India
K Mariyababu - Department of CS&SE, Andhra University College of Engineering (A), Visakhapatnam, AP, India
A Mary Sowjanya - Department of CS&SE, Andhra University College of Engineering (A), Visakhapatnam, AP, India

چکیده مقاله:

As the internet and its applications are growing, E-commerce has become one of its rapid applications. Customers of E-commerce were provided with the opportunity to express their opinion about the product on the web as a text in the form of reviews. In the previous studies, mere founding sentiment from reviews was not helpful to get the exact opinion of the review. In this paper, we have used Aspect-Based Opinion Mining to get more interesting aspects of a product’s sentiment from unlabelled textual data. First, noun phrases algorithm was used to get all the aspect term of a review sentence. Secondly, the sentiment algorithm was applied on the result of the noun-phrase algorithm and also applied on adjectives and on adverbs. Finally, using relative importance algorithm important aspects were presented to the user. Our proposed methodology has achieved 77.03% of accuracy compared to previews studies. The proposed methodology can be applied for any product reviews in the form of text without any label, and it does not require any training dataset

کلیدواژه‌ها:

Sentiment Analysis,Opinion Mining,Aspect Term,Aspect Based Analysis,Customer Review

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-JR_IJE-JR_IJE-30-11_011.html
کد COI مقاله: JR_IJE-30-11_011

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Srividya, K; K Mariyababu & A Mary Sowjanya, ۱۳۹۶, Mining Interesting Aspects of a Product using Aspect-based Opinion Mining from Product Reviews, International Journal of Engineering (IJE) 30 (11), https://www.civilica.com/Paper-JR_IJE-JR_IJE-30-11_011.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Srividya, K; K Mariyababu & A Mary Sowjanya, ۱۳۹۶)
برای بار دوم به بعد: (Srividya; Mariyababu & Mary Sowjanya, ۱۳۹۶)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مدیریت اطلاعات پژوهشی

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

مقالات مرتبط جدید

شبکه تبلیغات علمی کشور

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.