CIVILICA We Respect the Science
ناشر تخصصی کنفرانسهای ایران
عنوان
مقاله

Image Segmentation: Type–2 Fuzzy Possibilistic C-Mean Clustering Approach

اعتبار موردنیاز : ۱ | تعداد صفحات: ۸ | تعداد نمایش خلاصه: ۲۹۰ | نظرات: ۰
سال انتشار: ۱۳۹۱
کد COI مقاله: JR_IJIEPR-23-4_001
زبان مقاله: انگلیسی
حجم فایل: ۳۹۹.۴۵ کیلوبایت (فایل این مقاله در ۸ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۸ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳,۰۰۰ تومان

آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله Image Segmentation: Type–2 Fuzzy Possibilistic C-Mean Clustering Approach

  M.H. Fazel Zarandi - Professor of Department of Industrial Engineering, Amirkabir University of Technology, Tehran, Iran
  M. Zarinbal - Department of Industrial Engineering, Amirkabir University of Technology, Tehran, Iran

چکیده مقاله:

Image segmentation is an essential issue in image description and classification. Currently, in many real applications, segmentation is still mainly manual or strongly supervised by a human expert, which makes it irreproducible and deteriorating. Moreover, there are many uncertainties and vagueness in images, which crisp clustering and even Type-1 fuzzy clustering could not handle. Hence, Type-2 fuzzy clustering is the most preferred method. In recent years, neurology and neuroscience have been significantly advanced by imaging tools, which typically involve vast amount of data and many uncertainties. Therefore, Type-2 fuzzy clustering methods could process these images more efficient and could provide better performance. The focus of this paper is to segment the brain Magnetic Resonance Imaging (MRI) in to essential clusters based on Type-2 Possibilistic C-Mean (PCM) method. The results show that using Type-2 PCM method provides better results.

کلیدواژه‌ها:

Brain Tumors Diagnosis, Image segmentation, Type-2 Fuzzy Logic, Type-2 PCM

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-JR_IJIEPR-JR_IJIEPR-23-4_001.html
کد COI مقاله: JR_IJIEPR-23-4_001

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Fazel Zarandi, M.H. & M. Zarinbal, ۱۳۹۱, Image Segmentation: Type–2 Fuzzy Possibilistic C-Mean Clustering Approach, International Journal of Industrial Engineering & Production Research 23 (4), https://www.civilica.com/Paper-JR_IJIEPR-JR_IJIEPR-23-4_001.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Fazel Zarandi, M.H. & M. Zarinbal, ۱۳۹۱)
برای بار دوم به بعد: (Fazel Zarandi & Zarinbal, ۱۳۹۱)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز: دانشگاه دولتی
تعداد مقالات: ۱۹۲۲۸
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مدیریت اطلاعات پژوهشی

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

مقالات مرتبط جدید

شبکه تبلیغات علمی کشور

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.