CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

پیش بینی بار کوتاه مدت با استفاده از تجزیه سری زمانی بار و شبکه عصبی

اعتبار موردنیاز PDF: ۱ | تعداد صفحات: ۱۰ | تعداد نمایش خلاصه: ۴۲۵ | نظرات: ۰
سال انتشار: ۱۳۸۷
کد COI مقاله: JR_JME-2-16_005
زبان مقاله: فارسی
حجم فایل: ۴۴۳.۴۱ کیلوبایت (فایل این مقاله در ۱۰ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

متن کامل این مقاله دارای ۱۰ صفحه در فرمت PDF قابل خریداری است. شما می توانید از طریق بخش روبرو فایل PDF این مقاله را با پرداخت اینترنتی ۳,۰۰۰ تومان بلافاصله دریافت فرمایید
قبل از اقدام به دریافت یا خرید مقاله، حتما به فرمت مقاله و تعداد صفحات مقاله دقت کامل را مبذول فرمایید.
علاوه بر خرید تک مقاله، می توانید با عضویت در سیویلیکا مقالات را به صورت اعتباری دریافت و ۲۰ تا ۳۰ درصد کمتر برای دریافت مقالات بپردازید. اعضای سیویلیکا می توانند صفحات تخصصی شخصی روی این مجموعه ایجاد نمایند.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود فایل PDF مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۱۰ صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله پیش بینی بار کوتاه مدت با استفاده از تجزیه سری زمانی بار و شبکه عصبی

  روح الله فیروزنیا - دانشکده مهندسی برق و کامپیوتر، پردیس فنی، دانشگاه سمنان
  نیما امجدی - دانشکده مهندسی برق و کامپیوتر، پردیس فنی، دانشگاه سمنان

چکیده مقاله:

پیش بینی بار کوتاه مدت یک فرایند پایه در بهره برداری سیستم های قدرت محسوب می شود. بسیاری از توابع بهره برداری نظیر آرایش تولید، پخش بار اقتصادی، ارزیابی ایمنی و هماهنگی آبی حرارتی به پیش بینی بار کوتاه مدت وابسته می باشند. در طی سه دهه اخیر روش های مختلفی برای پیش بینی بار کوتاه مدت ارائه شده و نرم افزارهای صنعتی متعددی نیز بر پایه این روش ها تهیه شده اند. از جمله این روش ها می توان به انواع سری های زمانی، هموارسازی نمایی، فیلتر کالمن، شبکه های عصبی و شبکه های فازی عصبی اشاره نمود. مشکلی که تمام روش های پیش بینی بار کوتاه مدت با آن مواجه می باشند انتخاب ورودی های مناسب است. این امر وابسته به مشخصات سیستم قدرت بوده و با گذشت زمان و تغییر الگوی بار تغییر می کند. در این مقاله ابتدا سری زمانی بار از طریق یک تبدیل ریاضی مناسب (تبدیل موجک) تجزیه شده و سپس از سری های حاصل شده پارامترهای ورودی برای آموزش شبکه عصبی استخراج می شوند.

کلیدواژه‌ها:

پیش بینی بار، شبکه عصبی، تبدیل موجک

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-JR_JME-JR_JME-2-16_005.html
کد COI مقاله: JR_JME-2-16_005

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
فیروزنیا, روح الله و نیما امجدی، ۱۳۸۷، پیش بینی بار کوتاه مدت با استفاده از تجزیه سری زمانی بار و شبکه عصبی، فصلنامه مدل سازی در مهندسی 2 (16)، https://www.civilica.com/Paper-JR_JME-JR_JME-2-16_005.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (فیروزنیا, روح الله و نیما امجدی، ۱۳۸۷)
برای بار دوم به بعد: (فیروزنیا و امجدی، ۱۳۸۷)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز: دانشگاه دولتی
تعداد مقالات: ۶۲۸۴
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مدیریت اطلاعات پژوهشی

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

مقالات مرتبط جدید

شبکه تبلیغات علمی کشور

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.