CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

Artificial Neural Networks Model for Predicting Density and Compressive Strength of Concrete Cement paste

اعتبار موردنیاز: ۱ | تعداد صفحات: ۸ | تعداد نمایش خلاصه: ۲۲۱۹ | نظرات: ۰
سرفصل ارائه مقاله: بتن
سال انتشار: ۱۳۸۴
کد COI مقاله: NCCE02_1072
زبان مقاله: انگلیسی
حجم فایل: ۱۱۴.۷۵ کلیوبایت (فایل این مقاله در ۸ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید. در پایگاه سیویلیکا عموما مقالات زیر ۵ صفحه فولتکست محسوب نمی شوند و برای خرید اینترنتی عرضه نمی شوند.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود PDF مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۸ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳۰,۰۰۰ ریال

آدرس ایمیل خود را در زیر وارد نموده و کلید خرید با پرداخت اینترنتی را بزنید. آدرس ایمیل:

رفتن به مرحله بعد:

در صورت بروز هر گونه مشکل در روند خرید اینترنتی، بخش پشتیبانی کاربران آماده پاسخگویی به مشکلات و سوالات شما می باشد.

مشخصات نویسندگان مقاله Artificial Neural Networks Model for Predicting Density and Compressive Strength of Concrete Cement paste

Ehsan Rasa - BSc. Student of Civil engineering
Hamed Ketabchi - BSc. Student of Civil engineering
Mohammad Hadi Afshar - Associate Professor of Civil engineering Department

چکیده مقاله:

An artificial neural network of the feed-forward back-propagation type has been applied for predicting density and compressive strength properties of cement paste portion of concrete mixtures. Artificial neural networks (ANNs) have recently been introduced as an efficient artificial intelligence modeling technique for applications incorporating a large number of variables. Mechanical properties of concrete are highly influenced by density and compressive strength of concrete cement paste. Density and compressive strength of concrete cement paste are affected by several parameters, viz. water-cementitious materials ratio, silica fume unit contents, percentage of super-plasticizer, curing, cement type and etc. The 28-day compressive strength and saturated surface dry (SSD) density values are considered as the aim of the prediction. A total of 600 specimens were selected. The system was trained based on 350 training pairs chosen randomly from the data set, and tested using remaining 250 examples. Results indicate that density and compressive strength of concrete cement paste can be predicted much more accurately using ANN method compared to conventional models (Traditional regression analysis, statistical methods and etc.).

کلیدواژه‌ها:

Cement Paste, Compressive Strength, Density, Neural Network, Silica Fume

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-NCCE02-NCCE02_1072.html
کد COI مقاله: NCCE02_1072

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Rasa, Ehsan; Hamed Ketabchi & Mohammad Hadi Afshar, ۱۳۸۴, Artificial Neural Networks Model for Predicting Density and Compressive Strength of Concrete Cement paste, دومین کنگره ملی مهندسی عمران, تهران, دانشگاه علم و صنعت, عمران, https://www.civilica.com/Paper-NCCE02-NCCE02_1072.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Rasa, Ehsan; Hamed Ketabchi & Mohammad Hadi Afshar, ۱۳۸۴)
برای بار دوم به بعد: (Rasa; Ketabchi & Afshar, ۱۳۸۴)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :

  • Neville A.M. and Brooks, J.J. "Concrete Technology", Longman Scientific & ...
  • Neville A.M. "Properties of Concrete", Longman Scientific & Technical, 1995. ...
  • Zong, Guang and Yun, 1999. "The Application of Acquisition of ...
  • Guang and Zong, 2000. "Prediction of Compressive Strength of Concrete ...
  • Lai and Serra, 1997. "Concrete Strength Prediction by Means of ...
  • Yeh, 1998. "Modeling of Strength of High Performance Concrete Using ...
  • Dias and Pooliyadda, 2001. "Neural Networks for Predicting Properties of ...
  • M.Nehdi, H.El Chabib and M.H.El Naggar, 2001. "Predicting Performance of ...
  • Ju-Won Oh, In-Won Lee, Ju-Tae Kim and Jyu-Won Lee, 1999. ...
  • M.Nehdi, Y.Djebbar and A.Khan, 2001. "Neural Network Model for Cellular ...
  • Dave Anderson and George McNeill, 1992. "Artificial Neural Networks Technology, ...
  • Neural Network Modeling, "Qnet 2000 software", Vesta Services, Inc.Winnetka, IL. ...
  • مدیریت اطلاعات پژوهشی

    اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    مقالات مرتبط جدید

    شبکه تبلیغات علمی کشور

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.