CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

New Modeling Approaches in Agricultural and Biological Sciences

اعتبار موردنیاز: ۰ | تعداد صفحات: ۱ | تعداد نمایش خلاصه: ۱۸۷ | نظرات: ۰
سال انتشار: ۱۳۹۲
کد COI مقاله: NIAC01_012
زبان مقاله: انگلیسی
حجم فایل: ۱۱.۵۷ کلیوبایت
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

راهنمای دانلود فایل کامل این مقاله

اصل مقاله فوق در بانک مقالات سیویلیکا موجود نیست. مقالات کنفرانس‌های کشور توسط دبیرخانه‌های مربوط منتشر می‌شوند و در صورتی که اصل مقاله توسط دبیرخانه منتشر نشده باشد، امکان ارائه آن توسط سیویلیکا وجود ندارد. در صورتی که نویسنده این مقاله هستید، می‌توایند اصل مقاله را جهت درج در بانک مقالات به سیویلیکا ارسال نمایید.

خرید و دانلود PDF مقاله

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

مشخصات نویسندگان مقاله New Modeling Approaches in Agricultural and Biological Sciences

  Ali Asghar Besalatpour - Department of Soil Science, Vali-e-Asr University of Rafsanjan

چکیده مقاله:

So far, in many researches in agricultural and biological sciences the emphasis has been placed on conventional regression models to model a parameter indirectly from other data whilst they can only fit a linear function to input-output data pairs. However, the effect of the predictors on the parameter is not usually linear in nature. During the last decade, scientists have shown a keen interest in developing nonlinear indirect approaches to overcome this problem. Among the proposed indirect techniques, machine learning (ML) approaches have recently attracted greater interest in agricultural and biological engineering works. The ML techniques such as artificial neural networks (ANNs), support vector machines (SVMs), fuzzy logic (FL), adoptive neuro fuzzy inference system (ANFIS), and evolutionary algorithms can be used to achieve tractability, robustness, to provide a low cost solution with a tolerance of imprecision, uncertainty and approximation, and to avoid over-fitting problems. This makes the ML capable of analyzing long-time-series and large-scale data and thus solving the problems which conventional methods have not yet been able to solve in a satisfactory cost-effective and analytical manner. Hence, it is distinctly desirable to introduce expertise in the system with a view to helping neophytes to select and manipulate an appropriate ML technique. This study reviews the development of ML techniques. With the concepts and methods, applications of soft computing in the field of agricultural and biological engineering are presented, especially in the soil and water context for crop management and decision support in precision agriculture. The future of development and application of soft computing in agricultural and biological engineering is also discussed.

کلیدواژه‌ها:

artificial neural networks (ANNs), support vector machines (SVMs), fuzzy logic (FL), adoptive neuro fuzzy inference system (ANFIS), and evolutionary algorithms

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
http://www.civilica.com/Paper-NIAC01-NIAC01_012.html
کد COI مقاله: NIAC01_012

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Besalatpour, Ali Asghar, ۱۳۹۲, New Modeling Approaches in Agricultural and Biological Sciences, اولین کنفرانس بین المللی ایده های نو در کشاورزی, اصفهان, دانشگاه آزاد اسلامی واحد خوراسگان, http://www.civilica.com/Paper-NIAC01-NIAC01_012.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Besalatpour, Ali Asghar, ۱۳۹۲)
برای بار دوم به بعد: (Besalatpour, ۱۳۹۲)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز:
تعداد مقالات: ۲۳۴۰
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مدیریت اطلاعات پژوهشی

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

مقالات مرتبط جدید

شبکه تبلیغات علمی کشور

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.