CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

Estimating the Initial Pressure, Permeability and Skin Factor of Oil Reservoirs Using Artificial Neural Networks

اعتبار موردنیاز: ۱ | تعداد صفحات: ۱۱ | تعداد نمایش خلاصه: ۱۵۷۴ | نظرات: ۰
سرفصل ارائه مقاله: نفت و گاز و صنایع وابسته، مهندسی نفت
سال انتشار: ۱۳۸۴
کد COI مقاله: NICEC10_358
زبان مقاله: انگلیسی
حجم فایل: ۱۶۶.۲۴ کلیوبایت (فایل این مقاله در ۱۱ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید. در پایگاه سیویلیکا عموما مقالات زیر ۵ صفحه فولتکست محسوب نمی شوند و برای خرید اینترنتی عرضه نمی شوند.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود PDF مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۱۱ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳۰,۰۰۰ ریال

آدرس ایمیل خود را در زیر وارد نموده و کلید خرید با پرداخت اینترنتی را بزنید. آدرس ایمیل:

رفتن به مرحله بعد:

در صورت بروز هر گونه مشکل در روند خرید اینترنتی، بخش پشتیبانی کاربران آماده پاسخگویی به مشکلات و سوالات شما می باشد.

مشخصات نویسندگان مقاله Estimating the Initial Pressure, Permeability and Skin Factor of Oil Reservoirs Using Artificial Neural Networks

   Jeirani - Chemical Engineering Department, Shahid Bahonar University of Kerman, Kerman, Iran
   Mohebbi - Chemical Engineering Department, Shahid Bahonar University of Kerman, Kerman, Iran

چکیده مقاله:

Artificial neural network, a biologically inspired computing method which has an ability to learn, self-adjust, and be trained, provides a powerful tool in solving pattern recognition problems. In this study, a new approach based on artificial neural networks (ANNs) has been designed to estimate the initial pressure, permeability and skin factor of oil reservoir using the pressure build up test data. Five sets of actual field data in conventional and dual porosity reservoirs have been used to test the results of the neural network. The results from the network are in good agreement with the results from Horner plot. Finally, it is shown that the application of artificial neural networks in a pressure build up test reduces the cost of the test and it is also a valuable tool for well testing.

کلیدواژه‌ها:

Artificial neural networks; Initial pressure; Permeability; Skin factor; Pressure build up test; Well test

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-NICEC10-NICEC10_358.html
کد COI مقاله: NICEC10_358

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Jeirani, & Mohebbi, ۱۳۸۴, Estimating the Initial Pressure, Permeability and Skin Factor of Oil Reservoirs Using Artificial Neural Networks, دهمین کنگره ملی مهندسی شیمی ایران, زاهدان, دانشگاه سیستان و بلوچستان, https://www.civilica.com/Paper-NICEC10-NICEC10_358.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Jeirani, & Mohebbi, ۱۳۸۴)
برای بار دوم به بعد: (Jeirani & Mohebbi, ۱۳۸۴)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :

  • Coats, K.H., Kazemi, H., Odeh, A.S., Lebourg, M., Prats, M., ...
  • Muskat, M.: "Use of Data on the Build-up of Bottom ...
  • Horner, D.R.: "Pressure Build-Up in Wells", Third World Pet. Cong., ...
  • Allain, O.F., and Horne, R.N.: "Use of Artificial Intelligence in ...
  • Anraku, T., and Horne, R.N.: _ 'Di scrimination between Reservoir ...
  • ، Iranian Chemical Engineering Congress (IChEC10), Sistan _ Balochestan University ...
  • _ 9863 _ [6] Bean, M., and Jutten, C.: "Neural ...
  • Bhatt, A., and Helle, H.B.: "Committee neural networks for porosity ...
  • Helle, H.B., Bhatt, A., and Ursin, B.: "Porosity and permeability ...
  • Mohaghegh, S., Arefi, R., Ameri, S., and Rose, D.: 'Design ...
  • Shaw, A.M., Doyle, F.J., Schwaber, J.S.: "A dynamic neural network ...
  • Earlougher, R.C.: Advances in Well Test Analysis. 2"» edition, Society ...
  • Horne, R.N.: Modern Wel Test Analysis: A Computer-Aided Approach., _ ...
  • Sabet, M.: Well Test Analysis, Gulf Publishing, 1991. ...
  • ، Iranian Chemical Engineering Congress (IChEC10), Sistan _ Balochestan University ...
  • علم سنجی و رتبه بندی مقاله

    مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
    نوع مرکز:
    تعداد مقالات: ۲۰۵۵۹
    در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

    مدیریت اطلاعات پژوهشی

    اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    مقالات مرتبط جدید

    شبکه تبلیغات علمی کشور

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.