CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

SYNCHRONOUS GENERA TOR MODELLING USING COMPUTATIONAL INTELLIGENCE

اعتبار موردنیاز: ۰ | تعداد صفحات: ۱ | تعداد نمایش خلاصه: ۱۱۲۳ | نظرات: ۰
سرفصل ارائه مقاله: INTELLIGENT SYSTEM
سال انتشار: ۱۳۷۵
کد COI مقاله: PSC11_073
زبان مقاله: انگلیسی
حجم فایل: ۷.۸۱ کلیوبایت
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

راهنمای دانلود فایل کامل این مقاله

اصل مقاله فوق در بانک مقالات سیویلیکا موجود نیست. مقالات کنفرانس‌های کشور توسط دبیرخانه‌های مربوط منتشر می‌شوند و در صورتی که اصل مقاله توسط دبیرخانه منتشر نشده باشد، امکان ارائه آن توسط سیویلیکا وجود ندارد. در صورتی که نویسنده این مقاله هستید، می‌توایند اصل مقاله را جهت درج در بانک مقالات به سیویلیکا ارسال نمایید.

خرید و دانلود PDF مقاله

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

مشخصات نویسندگان مقاله SYNCHRONOUS GENERA TOR MODELLING USING COMPUTATIONAL INTELLIGENCE

   Menaj - Amirkabir University IRAN
   Seifipour - Amirkabir University IRAN
   Abedj - Amirkabir University IRAN

چکیده مقاله:

It is well-known that in order to apply fuzzy inference models as linguistic controllers in any control system, we need to know some parameters such as number of fuzzy partitions, shape and specifications of the membership functions.
Generally speaking, these parameters are chosen intuitively. In this paper we show that in compared with intuitive selection of these parameters the performance of fuzzy control systems will be improved by using genetic algorithms as well as Marquardt learning algorithm which is a modification of standard back propagation algorithm [6]. These two approaches ( genetic algorithms and back propagation training algorithm), yield appropriate parameters for fuzzy logic control system. In order to show the effectiveness of the proposed modifications on FLC, we apply them on a synchronous generator.

کلیدواژه‌ها:

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-PSC11-PSC11_073.html
کد COI مقاله: PSC11_073

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Menaj, ; Seifipour & Abedj, ۱۳۷۵, SYNCHRONOUS GENERA TOR MODELLING USING COMPUTATIONAL INTELLIGENCE, یازدهمین کنفرانس بین المللی برق, تهران, شرکت توانیر, پژوهشگاه نیرو, https://www.civilica.com/Paper-PSC11-PSC11_073.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Menaj, ; Seifipour & Abedj, ۱۳۷۵)
برای بار دوم به بعد: (Menaj; Seifipour & Abedj, ۱۳۷۵)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز:
تعداد مقالات: ۲۹۴۸۱
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مدیریت اطلاعات پژوهشی

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

مقالات مرتبط جدید

شبکه تبلیغات علمی کشور

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.